Установка солнечных коллекторов. выбор коллектора. расчет площади

Экономим электричество: расчеты производительности солнечного коллектора

Солнечная энергетика – это не только свет, преобразованный в электричество. Это еще и горячая вода, и тепло в доме. Чтобы преобразовать энергию солнечного излучения в тепло, нужны специальные установки – солнечные коллекторы. В период с апреля по октябрь эти установки снабжают дома горячей водой, а в осенне-зимний период совместно с традиционными источниками энергии отапливают помещения.

Владельцам коттеджей, загородных домов использование солнечных коллекторов дает существенную экономию средств, так как горячая вода поступает в дом практически бесплатно. Но для того, чтобы эти установки работали в самом оптимальном режиме, перед тем, как выбрать тип установки, ее месторасположение, необходимо выполнить хотя бы приблизительный, прикидочный расчет солнечного коллектора для ГВС (горячего водоснабжения).

Расчет реальной мощности солнечного коллектора

Производители указывают максимальную мощность гелиоколлектора при полном освещении при направлении на юг и ориентации перпендикулярно солнцу в полдень. Но не всегда можно так направить панели, особенно если их устанавливать крыше дома.

Ниже приводим формулы, которые универсальны и могут использоваться как для подсчета количества коллекторов, так для подсчета общей площади в квадратных метрах.

Подсчет эффективности гелиоколлектора по направлению

Рассчитать базовую тепловую производительность солнечного плоского или вакуумного коллектора можно по следующей формуле:

Читайте также: Схема подключения гидроаккумулятора для систем водоснабжения: как правильно установить и подключить гидробак к насосной станции

Pv = sin A x Pmax x S

  • Pv – мощность солнечного коллектора;
  • A – угол отклонения плоскости гелиоколлектора от направления на юг;
  • Pmax – средний уровень инсоляции в вашем регионе в холодное время года.

Даже если солнце не скрыто облаками, в течении дня уровень инсоляции меняется, от чего зависит производительность коллектора. Усредненные данные видно на этом графике:

Данные на иллюстрации по дневному уровню инсоляции усредненные, но позволяют понять разницу между количеством тепловой энергии, которую можно получить в разное время года.

Максимальный уровень инсоляции зимой в среднем в 3-4 раза меньше, чем летом. Количество солнечной энергии, которую может получить гелиоколлектор за сутки зимой в 5-7 раз ниже (в зависимости от широты) чем летом.

Расчет производительности гелиоколлектора по углу установки

Оптимальный угол установки солнечного коллектора для отопления дома зимой – так, чтобы он был перпендикулярен солнечным лучам в 10 часов утра. Так он может собрать максимум тепловой энергии на протяжении светового дня.

Иногда не получается этого сделать (при установке на крыше, монтаже на стандартных опорах). Из-за отклонения от оптимального угла энергоэффективность коллектора может измениться. Рассчитать ее можно по такой формуле:

Pm = sin(180 — A — B) x Pv

  • Pm – производительность гелиоколлектора;
  • A – угол между коллектором и плоскостью земли;
  • B – высота солнца над горизонтом в 10 часов утра;
  • Pv – найденная ранее мощность.

Если у вас есть возможность ориентировать солнечный коллектор так, чтобы он был перпендикулярен солнцу, тогда:

Pm = Pv

На фотографии обозначен угол наклона солнечного коллектора, который нужно использовать при вычислениях.

Особенности плоских панелей

Плоский гелиоколлектор имеет небольшие теплопотери через заднюю стенку, которые составляют в среднем 5 Вт на квадратный метр. Поэтому от полученного ранее значения реальной мощности P надо отнять 5 Вт на каждый квадратный метр площади.

Уровень поглощения солнечного излучения плоского гелиоколлектора ниже 100%. Это нужно учесть при подсчете его тепловой мощности. Если панель поглощает только 95%, то ее реальная мощность:

P = Pm x 0.95 х S

  • Pm – мощность коллектора из формулы выше;
  • P – реальная производительность коллектора;
  • S – площадь коллектора.

Производительность вакуумного коллектора

Производители вакуумных коллекторов могут указывать мощность коллектора без учета расстояния между трубками. Чтобы определить, какова реальна площадь поверхности трубок и производительность вакуумного коллектора, воспользуемся формулой:

P = Pm x D / L

  • P – реальная производительность солнечного коллектора;
  • Pm – мощность коллектора, рассчитанная ранее;
  • D – диаметр вакуумных трубок;
  • L – расстояние между трубками.

Термодинамические солнечные панели

С таким типом коллекторов все гораздо сложнее. Сейчас они не слишком распространены, производители экспериментируют с материалами и селективным покрытием. Разные модели отличаются уровнем поглощения и теплопотерями.

В целом, термодинамические солнечные панели имеют право на жизнь. Но мы бы не рекомендовали обустраивать отопление с их помощью. На рынке мало эффективных моделей, а те, которые есть, продают по завышенным ценам.

Итоги

Солнечные коллекторы из года в год обретают все большую популярность среди владельцев дачных участков. Очевидно, что это говорит о том, что данное устройство позволяет существенно сэкономить электроэнергию при нагреве воды, что подробно описано и доказано в вышеизложенных расчетных примерах.

Данный агрегат является актуальным практически для любого региона России. Но прежде чем купить солнечный коллектор, лучше посчитать рентабельности и сроки окупаемости этого оборудования, что позволит убедиться в актуальности представленного инновационного оборудования для применения в Вашем регионе.

Дата публикации:

Сколько нужно солнечных коллекторов для отопления дома?

Независимо от того, какая система отопления установлена в доме, теплопотери у него будут одинаковыми. Для точного просчета лучше обратиться к специалистам, но для получения примерных данных можно использовать онлайн-сервисы https://teplo-info.com/otoplenie/raschet_teplopoter_online.

Разделив полученные данные на значение P, вычисленное по последней формуле, вы узнаете, сколько гелиоколлекторов или квадратных метров коллекторов вам необходимо чтобы обеспечить отопление дома зимой.

Отдельно стоит напомнить, что в холодное время года есть нюансы с эксплуатацией гелиоколлекторов. Узнать об этом больше можно в статье «Как работает солнечный коллектор зимой – эффективность, проблемы и их решение».

Читайте также:
Спальня для девочки подростка 15 лет — фото, дизайн, интерьер

Основная проблема змой — чистить коллекторы от холода.

Солнечная электроэнергия.

Для преобразования энергии Солнца в электроэнергию на сегодняшний день наиболее эффективными являются кремниевые фотоэлектрические батареи. Но их КПД низок и по факту не превышает 14%.

Таким образом, панель площадью 1,0 м2 способна выдать на широте Москвы максимальную мощность порядка 0,11 КВт. И не верьте недобросовестным продавцам, завышающим показатели мощности!

Низкий КПД по большому счету ни о чем не говорит (ездим же мы на автомобилях, двигатели которых имеют КПД=10%). Ставь панель большей площади – и всё. Однако высокая стоимость полного комплекта солнечной электростанции (с панелями, аккумуляторами, автоматикой, преобразователями ~ 1100 $/КВт) продолжает являться в России сдерживающим широкое распространение солнечных панелей фактором. Конечно, в местах, где другим способом получить электроэнергию невозможно или очень сложно и дорого (космос, кемпинг, дом лесника, не электрифицированный поселок), солнечная электростанция является хорошим решением проблемы.

К 2030 году прогнозируемая мощность всех солнечных фотоэлектрических преобразователей в мире превысит 200 ГВт. При этом стоимость произведенной электрической энергии предполагается 0,10…0,15 $/КВт*ч.

Подключим горячее водоснабжение?

В дополнение к отоплению, к коллекторной солнечной системе можно подключить горячее водоснабжение. Для этого подсчитаем, сколько тепловой энергии вам необходимо тратить каждый день. Формула расчета солнечного коллектора для ГВС проста:

Pw = 1,163 x V x (T – t) / 24

  • Pw – количество тепла, необходимое для подогрева воды;
  • V – средний объем горячей воды, расходуемый за сутки;
  • T – температура, до которой нужно подогреть воду;
  • t – температура, с которой вода поступает в систему.

Чтобы рассчитать необходимое количество дополнительных коллекторов для ГВС – разделите это значение на производительность солнечного коллектора P, полученное по последней формуле.

Обзор цен

Кроме мирового имени на стоимость нагревателя могут влиять:

  • качество сборки;
  • материал абсорбера и корпуса;
  • толщина и вариант укладки изоляции;
  • толщина стекла и др.;

Так как, конструктивных различий, которые могут влиять на стоимость оборудования немало, то и цены колеблются в большом диапазоне. К примеру, коллектор российского производства будет стоить в пределах 21 тыс. руб. (Сокол-Эффект), вакуумный коллектор 30HP – 795 $ ( Китай), водонагреватель VFK 150V – 690 евро (Vaillant, Германия), Solar 7000TF – 875 евро (Bosch, Германия).

Немецкие производители в комплект включают оригинальные крепежи, которые зачастую изготовлены из нержавейки или алюминия, а это также оказывает влияние на цену. В конечную стоимость войдет оплата за проведение монтажных работ, покупка необходимых расходных и вспомогательных материалов.

Советы по отоплению дома гелиоколлекторами

  • Плоские солнечные коллекторы эффективнее в теплое время года, а вакуумные трубки – зимой. В зависимости от модели и производителя разница может достигать 50%. Подробнее об этом вы можете прочитать в статье «Солнечный коллектор – плоский или вакуумный?».
  • На случай непредвиденной ситуации стоит иметь альтернативные источники тепловой энергии – конвекторы, газовый или твердотопливный котел, тепловой насос.
  • Обычно коллекторы поставляются вместе с отдельными баками-накопителями. Выгоднее будет приобрести отдельно плоские или вакуумные панели и один или два больших резервуара с хорошей теплоизоляцией. Чем меньше объем бака, тем быстрее он остывает.
  • Для организации эффективного отопления стоит иметь большой бак накопитель, в котором в светлое время суток коллекторы будут нагревать воду, а ночью она будет расходоваться на обогрев здания.
  • Наличие качественного контроллера в системе отопления позволит поддерживать заданную температуру, регулировать циркуляцию, устанавливать температурные режимы, задавать таймер включения.
  • Для автономного отопления дома солнечными коллекторами необходимо купить большое количество оборудования, оплатить его монтаж и подключение. Если вам это не по карману – можно использовать гелиоколлекторы как вспомогательную систему отопления.
  • Хорошей экономии можно достичь если использовать солнечные коллекторы в паре с тепловым насосом. Они будут нагревать воду, а тепловой насос – подогревать ее до необходимой температуры.
  • Если здание плохо утеплено, то использовать солнечные коллекторы эффективнее с водяным теплым полом. Он отдает максимум тепла в помещение, а не стенам, как радиаторы отопления.

Как видим, расчет солнечных коллекторов для отопления дома довольно прост. Конечно, специалист должен будет посчитать множество других нюансов, но они не смогут существенно повлиять на конечный результат. В некоторых случаях обогрев здания коллекторами нецелесообразен, но в качестве дополнительного источника бесплатного тепла, гелиоколлекторы незаменимы.

Не забудьте поделиться публикацией в соцсетях!

Хотите получить помощь мастера, специалиста в этой сфере? Переходите на портал поиска мастеров Профи. Это полностью бесплатный сервис, на котором вы найдете профессионала, который решит вашу проблему. Вы не платите за размещение объявления, просмотры, выбор подрядчика. Если вы сами мастер своего дела, то зарегистрируйтесь на Профи и получайте поток клиентов. Ваша прибыль в одном клике!

Виды вакуумных коллекторов

Солнечные коллекторы разных типов содержат вакуумные трубки разных размеров. Чем больше трубка, и чем толще она – тем больше энергии будет подавать коллектор. Длина трубок составляет минимум 1 метр, максимальная длина – более двух метров. Трубки диаметром менее 58 мм не приветствуются, так как они менее эффективны.

Водонагреватели время от времени нужно чистить, но как это сделать читайте в статье слив воды из водонагревателя. Про накопительные водонагреватели термекс, отзывы смотри тут.

Читайте также:
Утепление цоколя в деревянном доме – варианты и способы, популярные материалы

Трубки для подачи тепла также бывают разными:

  • Медные трубки, находясь в стеклянных трубках, нагреваются. Тепло испаряется теплоносителем, поднимается в верхнюю часть трубки и конденсируется.
  • В системе с Uтрубками, теплоноситель, проходя через нижнюю часть трубки, нагревается и быстро проходит через верхнюю ее часть – это система замкнутого контура. Она отличается ускоренным теплообменом и на 15-20% эффективнее стандартных систем.

Спектральный состав солнечной радиации

На интервал длин волн между 0,1 и 4 мк приходится 99% всей энергии солнечной радиации. Всего 1% остается на радиацию с меньшими и большими длинами волн, вплоть до рентгеновых лучей и радиоволн. Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,75 мк. Однако в этом интервале заключается почти половина всей солнечной лучистой энергии (46%). Почти столько же (47%) приходится на инфракрасные лучи, а остальные 7% — на ультрафиолетовые. В метеорологии принято выделять коротковолновую и длинноволновую радиацию. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мк. Она включает, кроме видимого света, еще ближайшую к нему по длинам волн ультрафиолетовую и инфракрасную радиацию. Солнечная радиация на 99% является такой коротковолновой радиацией. К длинноволновой радиации относят радиацию земной поверхности и атмосферы с длинами волн от 4 до 100-120 мк. Интенсивность прямой солнечной радиации

Радиацию, приходящую к земной поверхности непосредственно от солнечного диска, называют прямой солнечной радиацией, в отличие от радиации, рассеянной в атмосфере. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже Земной шар в целом так мал в сравнении с расстоянием от Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

Приток прямой солнечной радиации на земную поверхность или на любой вышележащий уровень в атмосфере характеризуется интенсивностью радиации I

, т. е. количеством лучистой энергии, поступающим за единицу времени (одну минуту) на единицу площади (один квадратный сантиметр), перпендикулярной к солнечным лучам.

Рис. 1. Приток солнечной радиации на поверхность, перпендикулярную к лучам (АВ

), и на горизонтальную поверхность (
АС
).

Легко понять, что единица площади, расположенной перпендикулярно к солнечным лучам, получит максимально возможное в данных условиях количество радиации. На единицу горизонтальной площади придется меньшее количество лучистой энергии:

I’ = I sinh

где h

— высота солнца (рис. 1).

Все виды энергии взаимно эквивалентны. Поэтому лучистую энергию можно выразить в единицах любого вида энергии, например в тепловых или механических. Естественно выражать ее в тепловых единицах, потому что измерительные приборы основаны на тепловом действии радиации: лучистая энергия, почти полностью поглощаемая в приборе, переходит в тепло, которое и измеряется. Таким образом, интенсивность прямой солнечной радиации будет выражаться в калориях на квадратный сантиметр в минуту (кал/см2мин).

Обзор моделей

«Дачник»

Эта модель стоит около 18500 руб. Этот коллектор способен нагревать воду до 95 градусов и прекрасно подходит для дачных домиков. Имеет гарантию от производителя 12 месяцев. Этого времени достаточно, чтобы убедиться в его надежности.

Данная модель обладает следующими техническими характеристиками:

  1. Бак объёмом 100 литров изготовлен из высококачественной нержавеющей стали.
  2. Вакуумная трубка имеет длину 150 см.
  3. Диаметр трубки (внешний) 4,8 см.
  4. Максимально возможное давление в трубке 0,6 Мп.
  5. Конструкция устойчива к граду до 0,5 см.
  6. Трубки изготавливаются из боросиликатного стекла, обладающего поглощающим эффектом.
  7. Общий вес коллектора составляет 45 кг.
  • набор пыльников (уплотнительных) – 1 шт.;
  • трубки вакуумные – 16 штук;
  • станина и комплект болтов – 1 шт.;
  • расширительный бак – 1 шт.;
  • бак-термос на 100 л. – 1 шт.;

CP-II-20-175 от «АНДИ Групп»

В комплект входят:

  • бак водяной объемом 175 л., внутренний контур выполнен из нержавеющей стали, а наружный из гальванизированной окрашенной стали;
  • трубки вакуумные – 20 шт.;
  • TNC-2 (контроллер).;

Теплоизоляция бака выполнена из полиуретана (50 мм.). Диаметр внутренний 36 см., внешний 46 см., рама из стали толщиной 1,5 мм., имеющая гальваническое покрытие. Чистый вес установки 86 кг.

Расчет плоского коллектора солнечной энергии

Коллекторы предназначены для преобразования солнечного излучения в тепловую энергию. Плоские коллекторы солнечной энергии (КСЭ) могут собирать как прямое, так и рассеянное (диффузное) и даже отраженное солнечное излучение.

Плоский КСЭ работает в комплекте с баком-аккумулятором.

Основными элементами плоского солнечного коллектора являются: 4 – поглощающая панель с каналами для теплоносителя; 2- прозрачная изоляция (обычно из стекла); 5- тыльная и боковая изоляция; 3- корпус.

Поглощающая панель. Теплота передается с поверхности панели жидкому теплоносителю через трубки. Обычно на панель наносится покрытие с селективными оптическими свойствами. Высокоселективное покрытие обеспечивает максимально возможное преобразование поступающего излучения в тепловую энергию (высокая поглощательная

способность, альфа ( ), при этом только малая часть теплоты теряется вследствие излучения панели (низкая излучательная способность, эпсилон ( )

– более высокий уровень рабочих температур.

Покрытие наносится либо гальваническим способом (черный хром), либо напылением (так называемые «синие слои»). Высокая селективность обеспечена в обоих случаях, покрытия отличаются устойчивостью к воздействию окружающей среды (например, хлоридосодержащий морской воздух), а также поглощательной и излучательной способностью при различных температурах.

Читайте также:
Установка конька на металлочерепицу: крепление, монтаж, видео

Эффективность плоского КСЭ с селективным покрытием в 1,5-2 раза выше, чем без покрытия.

В зависимости от конструкции каналов для теплоносителя различают пластинчатые и сплошные коллекторы. Во втором случае трубка с теплоносителем проходит по всей поверхности панели в виде меандра.

Пластинчатые коллекторы в нормальных условиях эксплуатации имеют сравнительно небольшие потери давления, что создает риск неравномерного распределения теплоносителя. Панели с трубками в форме меандра

обеспечивают надежный отбор теплоты, поскольку теплоноситель протекает по одной трубке.

Изоляция предназначена для снижения тепловых потерь в окружающую среду. Прозрачная изоляция панели расположена на фронтальной поверхности панели и обычно состоит из одного или двух слоев стекла.

Площадь апертуры коллектора – это максимальная проецируемая площадь, через которую может поступать солнечное излучение. В плоском коллекторе площадью апертуры является видимая зона защитного стекла, то есть область внутри рамы коллектора, через которую излучение попадает в коллектор.

Коэффициентом полезного действия солнечного коллектора называется доля солнечного излучения, попадающая на площадь апертуры коллектора, которая преобразуется в полезную тепловую энергию.

Коэффициент полезного действия зависит от рабочего состояния коллектора. Способ расчета КПД одинаков для всех типов коллекторов. Часть попадающего на коллектор солнечного излучения теряется вследствие отражения и поглощения на прозрачном покрытии и вследствие отражения от самой тепловоспринимающей панели. По соотношению интенсивности попадающего на коллектор излучения и мощности излучения, преобразующейся в теплоту, можно рассчитать оптический коэффициент полезного действия коллектора. Он обозначается, как η 0 (эта ноль).

Если коллектор нагревается солнечным излучением, то он теряет часть теплоты в окружающую среду вследствие теплопроводности материала коллектора, теплового излучения и конвекции (движения воздуха). Эти теплопотери можно рассчитать с помощью коэффициентов тепловых потерь k 1 и k 2 и разности температур ΔT (дельта Т) между поглощающей панелью и окружающей средой. Разность температур указывается в К (градусах Кельвина).

где η 0 – оптический коэффициент полезного действия, доли от 1; k 1 и k 2 – коэффициенты тепловых потерь в окружающую среду;

Т – разность температур теплоносителя (воды) и наружного воздуха, К;

Е g – максимальная интенсивность (плотность) падающего на поверхность земли солнечного излучения, Вт/м 2 .

Е g = 1000 Вт/м 2 при безоблачном небе.

η 0 , k 1 и k 2 – справочные величины для конкретного типа коллектора.

Как видно из формулы, коэффициент полезного действия падает при росте разности температур между коллектором и окружающей средой.

Если отбор теплоты из коллектора прекращается (т.е. насос не работает, а теплоноситель не циркулирует), коллектор нагревается до температуры стагнации – тепловые потери равны поглощенному излучению, а производительность равна нулю. Для плоских КСЭ это примерно 200 °С.

1) Среднемесячное дневное количество суммарной солнечной энергии, поступающей на наклонную поверхность плоского КСЭ определяется по формуле:

Eк R E , кВт·ч/м 2 ·день

где Е – среднемесячное дневное количество суммарного солнечного излучения, поступающего на горизонтальную поверхность, кВт·ч /м 2 ·день;

R – коэффициент пересчета суммарной среднемесячной дневной солнечной радиации, поступающих на наклонную и горизонтальную поверхности КСЭ;

Солнечный коллектор. Примеры расчета и обвязки

Солнечный коллектор — это установка , собирающая солнечную энергию с последующим ее преобразованием в тепло.
Солнечные коллекторы используются летом для снабжения дома горячей водой, а так же подогрева воды в бассейнах. А в зимнее время — для отопления совместно с твердо-топливным, жидкотопливным или электрическим отоплением. Использование солнечных коллекторов позволяет сократить расходы на отопление на пятьдесят и более процентов. Несмотря на то, что в нашей климатической зоне количество пасмурных дней значительно, даже в это время коллектор продолжает работать, но для полной функциональности системы ГВС или отопления в этом случае необходим дополнительный источник энергии . На территории Беларуси существует возможность ежегодно получать в общем 1000- 1150 кВт/м -2 , что составляет около половины радиационного баланса Южной Европы и Ближнего Востока
При правильно спроектированной и смонтированной системе вы не будете испытывать проблем с эксплуатацией в будущем на протяжении долгих лет.
Свою стоимость солнечный коллектор окупает примерно в течение первых пяти лет эксплуатации. Поэтому последующие 25-30 лет гелиосистема позволит сократить энергозатраты.

Существующие виды солнечных коллекторов и принцип их работы:

1.Плоский солнечный коллектор — является самым распространенным , чаще всего используется в ГВС и отопительных системах частных домов. Плоский коллектор это изолированная панель, внутри которой расположен поглотитель в виде пластины. Пластина изготавливается из металла и является хорошим теплопроводником. В качестве металла обычно используют медь, которая меньше всего подвержена коррозии. Поверхность пластины специально обрабатывают высокоселективным покрытием, которое может удерживать солнечную энергию. Стекло в плоских коллекторах применяется специальное солярное ,оно не содержит большого количество железа, такое стекло резко снижает потерю тепла. Корпус солнечного коллектора предназначен для соединения в одно целое всех частей коллектора, надёжной их защиты от неблагоприятных природных явлений и присоединения коллектора к конструкции дома. Чаще всего его выполняют из анодированного алюминия в виде рамки.
Солнечный лучи проходя через стекло, попадают на пластину поглотителя, которая разогревается и превращает ультрафиолет в тепло. Далее тепло переходит к теплоносителю, а оттуда к антифризу или воде, которые циркулируют в коллекторе. Теплоноситель прогревается и передает тепло воде в теплообменнике. Здесь вода находится в горячем состоянии до момента, когда она потребуется потребителю. Плоские коллекторы обладают простотой и надёжностью, срок их эксплуатации достигает 50 лет.

Читайте также:
Строительство дома из несъемной опалубки

2. Вакуумный солнечный прямоточный коллектор — имеет специальные трубы, в которые встроен медный поглотитель со специальным покрытием, что гарантирует поглощение солнечной энергии даже при малом количестве лучей. Каждая медная трубка вставлена в запаянный по концам стеклянный сосуд цилиндрической формы и имеет свою собственную изоляцию. Теплоизолирующим материалом в таком коллекторе служит вакуум. Теплоноситель, протекая через коллектор, отдает ему свое тепло, преимущество данного коллектора заключается в том, что здесь значительно сокращены потери тепла из-за этого теплоноситель здесь может прогреваться до +160°С.
Солнечные лучи проходят через стеклянную трубу с вакуумом и попадают на поглотитель тепла, здесь они преобразуются в тепло. Энергия тепла передается жидкости, которая протекает по трубчатому прямоточному теплообменнику. Каждая из трубок подключена к накопительному баку двумя медными трубами, одна труба подводит горячую воду к баку, вторая выводит охлажденную воду, и процесс прогрева заново повторяется. Вакуумные коллекторы отличаются прежде всего длиной и диаметром стеклянных трубок. Чем меньше и тоньше трубка — тем меньше энергии может давать такой коллектор. Длина варьируется от 1.2 до 2.1 м. Наиболее распространенный диаметр — 58 мм.

3. Приблизительный расчет солнечных коллекторов

При использовании солнечных коллекторов в системе ГВС необходимо правильно определить их количество или площадь: от этого зависит производительность. Расчет солнечного коллектора любого типа базируется на потребностях, которые известны заранее.

3.1.Расчет плоского солнечного коллектора

Практика показывает, что на квадратный метр поверхности, установленной перпендикулярно ярким солнечным лучам, приходится в среднем 900 Вт тепловой энергии (при безоблачном небе). Расчет СК будем производить на основе модели площадью 1 м². Лицевая сторона – матовая, черная (обладает близким к 100% поглощением тепловой энергии). Тыльная сторона утеплена 10 см слоем пенополистирола.
Требуется рассчитать теплопотери, которые происходят на обратной, теневой стороне. Коэффициент теплоизоляции пенополистирола – 0,05 Вт/м × град. Зная толщину и предположив, что разница температур на противоположных сторонах материала – в пределах 50 градусов, высчитаем теплопотери:

0,05/0,1 × 50 = 25 Вт.

Такие же приблизительно потери ожидаются со стороны торцов и труб, то есть суммарное количество составит 50 Вт.
Безоблачным небо бывает редко, кроме того следует учитывать влияние налета грязи на коллекторе. Поэтому снизим количество тепловой энергии, приходящейся на 1 м², до 800 Вт. Вода, используемая в качестве теплоносителя в плоских СК, обладает теплоемкостью, равной 4200 Дж/кг × град или 1,16 Вт/ кг × град. Это означает, что для того, чтобы повысить температуру одного литра воды на один градус, потребуется затратить 1,16 Вт энергии.
Учитывая эти расчеты, получаем следующую величину для нашей модели солнечного коллектора 1 м² площади:

Округляем для удобства до 700 /кг × град. Это выражение обозначает количество воды, которое можно нагреть в коллекторе (модель площадью 1 м²) в течение часа. При этом не учитываются потери тепла с лицевой стороны, которые будут возрастать по мере разогрева. Эти потери будут ограничивать разогрев теплоносителя в солнечном коллекторе в пределах 70-90 градусов. В связи с этим, величина 700 может быть применена к низким температурам (от 10 до 60 градусов).
Расчет солнечного коллектора показывает, что система площадью 1 м² способна нагреть 10 литров воды на 70 градусов, что вполне достаточно для обеспечения дома горячей водой. Можно уменьшить время нагревания воды за счет уменьшения объема солнечного коллектора при сохранении его площади. Если же количество проживающих в доме требует большего объема воды – следует применить несколько коллекторов такой площади, которые соединяют в одну систему.
Для того, чтобы солнечный свет воздействовал на радиатор максимально эффективно, коллектор необходимо ориентировать под углом к линии горизонта, равным широте местности.
В среднем, для обеспечения жизнедеятельности одного человека необходимо 50 л горячей воды. Учитывая, что вода до подогрева имеет температуру около 10 °С, разница температур составляет 70 – 10 = 60 °С. Количество тепла для подогрева воды необходимо следующее:

W=Q × V × Tp = 1,16 × 50× 60 = 3,48 кВт энергии.

Разделив W на количество солнечной энергии, приходящейся на 1 м² поверхности в данной местности (данные гидрометеоцентров), получим площадь коллектора.
Расчет солнечного коллектора для отопления производится аналогично. Но объем воды (теплоносителя) необходим больший, что зависит от объема обогреваемого помещения. Можно сделать вывод, что улучшения эффективности водонагревательной системы такого типа возможно достичь методом уменьшения объема и одновременном увеличении площади.

3.2. Расчет вакуумного солнечного коллектора

Проектирование системы должно проводиться с учетом:

особенностей климата в данной местности;

объема отапливаемого помещения и этажности здания;

количества проживающих (работающих) людей;

типа установленных отопительных приборов;

коэффициента теплопроводности стен (определяется исходя из толщины и материала);

места размещения теплообменника и т.п.

Проектные работы выполняются в два этапа. Первый предполагает расчет солнечного коллектора для отопления, а именно определение их количества, необходимого для отопления. Второй этап – привязка полученных результатов к существующей системе отопления.
Подробнее о первом этапе: определяем количество энергии, которое вырабатывается коллектором за день. Для этого следует использовать данные о среднемесячном уровне солнечного излучения (сведения из гидрометеоцентра) в данной местности. Умножив это значение на площадь коллектора и его КПД (примем равным 0,8), получим:

Ек= Ес.× Sр.× 0,8 (кВт/день)

Читайте также:
Что такое промежуточное реле: конструкция, принцип действия, устройство и идеи по применению

Затем определяем количество расходуемой воды (Vдн, л.), которая нагреется коллектором в течение дня. Это зависит от параметров отопительной системы.
Известно, что для повышения температуры 1л воды на 1 градус требуется затратить 1,16 Вт мощности. Разделив числовое значение количества вырабатываемой энергии за день на теплоемкость воды, получим температуру, до которой солнечный коллектор данной модели может нагреть теплоноситель.

Если расчеты показывают, что полученная температура является недостаточно высокой, для ее увеличения необходимо изменить площадь СК: установить дополнительные вакуумные трубки или панели.

Установка солнечного коллектора

Качество работы солнечного коллектора, а точнее количество вырабатываемой энергии может зависеть от многих факторов. Но некоторые факторы можно учесть при установке коллектора, например, сюда относятся угол наклона и ориентация установки, за критерий ориентации в данном случае необходимо брать азимут.
Углом наклона принято считать угол между батареей и горизонтом. Во время монтажа коллектора на скатной кровле, за угол уклона берется сам скат . Как показывает практика идеальным углом наклона принято считать угол от 30 до 45 градусов.
Азимут покажет отклонение коллектора по отношению к югу, если его плоскость ориентирована на юг, то он должен быть равен нулю. В нашей широте принято считать, что отклонение на юг может быть равно 45 градусам к юго-западу или юго-востоку.

Установка солнечных коллекторов

Климатическая техника

Цены на отопление и горячую воду постоянно растут, вынуждая искать способ экономии и оптимизации. В связи с этим спрос на гелиосистемы для частных домов увеличивается. Установка солнечных коллекторов поможет сократить расходы по оплате коммунальных услуг.

Как работают солнечные коллекторы

Гелиоколлектор – это функциональная конструкция, используемая для получения энергии. Ее фоточувствительные элементы поглощают свет для нагрева жидкости или воздуха внутри трубок.

Принцип работы солнечного коллектора (СК): лучи солнца нагревают пластины черного цвета, и энергия аккумулируется для бытовых нужд. Способ ее получения – экологически чистый и экономичный.

Выделяют следующие виды бытовых коллекторов:

  • плоские;
  • вакуумные;
  • воздушные.

Расскажем подробнее о каждом из этих типов ниже.

Плоские

Популярные и бюджетные по расценкам устройства. Состоят из плоскостной светочувствительной пластины, соединенной с теплопроводящими трубами, стеклянного покрытия, теплоизоляции и металлической рамы. Пластина поглощает солнечный свет и аккумулирует тепловую энергию, которая нагревает жидкость-теплоноситель. В отличие от других типов, теряют много поглощенного тепла. Неэффективны в пасмурную погоду. Повышенная влажность плохо сказывается на конструктивных деталях.

Плоский коллектор

Вакуумные

Выделяют 2 типа вакуумных коллекторов: прямоточные и с косвенной передачей тепла. Первые применяются в теплое время года, вторые – всесезонно. В основе конструкции – вакуумная система трубок с металлическим стержнем внутри, в котором находится жидкость-теплоноситель. Такая установка работает по принципу термоса. Характеризуется оптимальным КПД.

Вакуумный солнечный коллектор

Воздушные

По принципу работы похожи на плоские. Но в воздушных коллекторах в качестве теплоносителя используют воздух. Устанавливают для отопления домов. Прогретый воздух заполняет помещение при помощи воздуховодов и вентилятора.

воздушный коллектор

Тип устройства выбирают, ориентируясь на цель использования. Конструкции подходят для дачных участков, коттеджей, деревенских домов и дуплексов.

Где устанавливать гелиоколлекторы

Основное условие для работы коллектора – открытое пространство, куда в любое время года свободно попадают прямые солнечные лучи. Устройство устанавливают на территориях частных домов, где нет тени от других построек и деревьев. Чаще светочувствительные пластины крепятся на крыше здания.

Распространенный способ – установка нескольких пластин, так называемых «геополей». Для монтажа подходят как скатные, так и плоские крыши. Из-за большого веса коллектора его закрепляют на несущих конструкциях – балках, стропилах и т. д.

Устройства устанавливают на балконах или горизонтальных поверхностях фасада. Чтобы оно работало эффективнее, светочувствительные элементы в России располагают строго на южной стороне. При их отклонении на запад или восток коэффициент поглощения солнечных лучей снизится.

Как рассчитать площадь коллектора

Площадь рабочей поверхности системы рассчитывают, учитывая ее вид и особенности расположения. Следует помнить, что КПД коллектора зависит от температурного режима и количества солнечной энергии.

Примерные значения для лета в России на 1 м²: до 160 кВт*ч в месяц, в остальное время – от 20 до 80 кВт*ч.

Для горячего водоснабжения потребуется приблизительно 100*1,16*30=3,48 кВт*ч. При этом 1,16 Вт*ч – это та энергия, которая понадобится для нагрева 1 кг воды на 1 °C.

Для регулирования выработки энергии в жаркую погоду используют тепловые насосы. Также летом конструкции накрывают плотным тентом, если генерируют много энергии. План установки и площадь светочувствительных элементов определяются индивидуально.

Каким должен быть угол наклона коллектора

Угол установки плоского солнечного коллектора зависит от следующих факторов:

  1. Регион проживания. Для южных регионов – 30-35°, для средней полосы – от 40°.
  2. Время года, когда планируется использовать установку (летний или зимний сезон, круглогодично). Для всесезонного применения выбирают угол, которые примерно равен географической широте региона. Летом это значение уменьшают на 15°. Зимой, наоборот, увеличивают.
  3. Климатические условия и количество осадков. Если гелиосистема используется в зимой, угол наклона делают крутым, чтобы снег не скапливался на ее поверхности.

монтаж коллекторов

В сопроводительной инструкции производитель указывает оптимальные показатели угла наклона для каждого солнечного нагревателя. Соблюдение всех условий для определения значений углового наклона способствует максимально эффективной работе оборудования.

Необходимые инструменты и материалы для монтажа солнечного коллектора

Установка солнечных коллекторов осуществляется под открытым небом. Следовательно, сама конструкция, трубопроводная система и все вспомогательные крепления со временем подвергаются разрушающему воздействию окружающей среды. На них могут появиться коррозии и деформации. Поэтому для установки используют только нержавеющие материалы.

Читайте также:
Шлифовка поверхности

Для монтажа солнечного коллектора используют следующие вспомогательные инструменты:

  • кран или подъемник;
  • строительные леса;
  • кровельная лестница;
  • страховочное оборудование – жилет, трос и т. д.;
  • строительный уровень;
  • вакуумный захват;
  • изоляционный материал для труб.

От качества установки зависит надежность, эффективность и долговечность оборудования.

Схемы подключения солнечного коллектора

При установке солнечного водонагревателя или системы отопления к устройству обязательно подключают накопительный бак. Он нужен из-за непропорционального расхода энергии и распределения генерируемого тепла. Со временем бак заполняется водой, которой владельцы системы используют по своему усмотрению.

Рекомендуется устанавливать стандартный бойлер или буферную емкость. Рационально построенная конструкция представляет собой соединение коллектора с теплопроводником, который сообщается с бойлером.

Для отопления дома

В северо-восточных регионах России осенью и зимой отсутствует максимальная солнечная активность. Гелиоустановки используются в качестве вспомогательного энергоисточника для подогрева. Схема подключения представлена на рисунке ниже.

Схема комбинированный накопительный бак

Солнечный коллектор подключают к водопроводу и циркулярному насосу. Энергию используют для косвенного нагрева помещения.

Для горячего водоснабжения

Существует 2 варианта использования: для лета и зимы.

Схема солнечных коллекторов

Первый подходит для дачников. Они нагревают воду только летом. Поэтому такая установка имеет минимальную инерционность. Нужно установить солнечный коллектор ниже уровня бака-накопителя, чтобы вода циркулировала естественным путем.

Зимой в качестве жидкости-теплоносителя используют антифриз, который вливают в аккумулирующую емкость со змеевиком. За счет его непрерывной циркуляции вода постоянно нагревается до оптимальной температуры.

Отопление + ГВС

Суть схемы подключения – объединение процессов отопления и ГВС. Применяется двухконтурная теплоаккумулирующая емкость с внутренним резервуаром. Это помогает отделить техническую воду от питьевой. Для автоматизации включают в схему контроллер СК для предупреждения перерасхода.

Альтернативная энергетика

Для подогрева бассейна

Для прогрева переносного или стационарного бассейна используют погружную помпу. Ее можно заменить на автоматизированную насосную станцию, которая будет осуществлять циркуляцию холодной воды из бассейна, а нагретой – из СК.

Монтаж и стоимость подключения гелиоколлектора специалистами

Установка солнечных коллекторов – дело трудоемкое. Если есть опыт в подобных работах, то можно сделать монтаж самостоятельно.

Перед установкой рекомендуется изучить инструкцию, почитать информацию на специализированных форумах. Монтаж популярных СК “Солтек” и Solar Fox можно посмотреть в специальном видео-инструктаже.

Монтаж солнечного коллектора и подключение его к водоснабжению можно заказать сертифицированным фирмам. Цена установки зависит от региона, минимальная сумма – 12 000 р. В смету входят наружные и внутренние работы.

Применение коллекторов для частичного или полного отопления и снабжения горячей водой – рациональное решение. Это экологически чистый и доступный способ получения энергии, который поможет сэкономить на оплате коммунальных услуг.

Расчеты систем солнечного горячего водоснабжения

Нагреть 1 кг воды на 1 градус можно, затратив 1,16 Вт*ч. Значит, нагреть тонну воды на 30 градусов (от 20 до 50) можно, затратив 1,16х1000х30=34800 Вт*ч.

Считается, что минимальная мощность, при которой еще более-менее будет работать гелиосистема — это 100 Вт/м². Летом в средней полосе России приход солнечной энергии составляет примерно 5 кВт*ч/м², с учётом среднего КПД солнечного коллектора около 60% получаем 3 кВт*ч энергии с 1 м² солнечного коллектора.

В среднем от вакуумного коллектора в течение года можно получить до 15-30% больше энергии, чем от плоского, причём эта добавка будет за счет более эффективной работы при низких температурах (т.е. как раз тогда, когда нужно поддерживать систему отопления и тепло нужнее всего). С другой стороны, при этом увеличивается стоимость системы. Целесообразность установки вакуумных или плоских коллекторов решается в каждом конкретном случае.

Одна сертификационная европейская лаборатория собрала параметры разных солнечных коллекторов в достаточно удобную форму для анализа. Основным итоговым корректным показателем для сравнения является удельный параметр — КОЛИЧЕСТВО ВЫРАБОТАННОЙ ЭНЕРГИИ ЗА ГОД приведенный к АПЕРТУРНОЙ площади солнечного коллектора (апертурная площадь — это площадь проекции внутреннего габарита коллектора или суммы проекций внутреннего размера вакуумных трубок или рефлектора на горизонтальную поверхность).

Сайт на английском, но при желании можно разобраться. Приведены данные по разным типам коллекторов разных производителей, показана конструкция коллекторов и их основные параметры, включая удельную выработку:
— для горячего водоснабжения,
— преднагрев (когда греется много воды до невысокой температуры),
— отопление.

Последние годы по всему миру стала популярной европейская система сертификации солнечных коллекторов Solar Keymark. Практически все серьезные производители получили такой сертификат на свою продукцию. В интернете есть онлайн база данных по всем сертифицированным Solar Keymark коллекторам.

Каждый тип коллекторов имеет свои области применения. В последнее время появилось много продавцов вакуумных коллекторов китайского производства сомнительного качества. Мы тоже продаем вакуумные китайские коллекторы, но при этом мы, путем проб и ошибок, выбрали одного из лучших производителей. Очень часто продавцы коллекторов вводят в заблуждение покупателей, завышая показатели выработки тепла и возможности солнечных коллекторов. Нужно понимать, что приход солнечной энергии в зимнее время на большей части территории России недостаточен для отопления (исключение составляют южные регионы европейской части России и некоторые регионы Восточной Сибири и Дальнего Востока.

Вакуумный солнечный коллектор на крыше

На сайте SintSolar есть перевод документа о сравнительном тестировании немецких плоских и вакуумных солнечных коллекторов. Там же можно почитать про особенности использования коллекторов с вакуумными трубками. Однако, нужно учитывать, что это сравнение тенденциозное, и делалось продавцом плоских коллекторов. Какая-то доля правды там есть, но выводы о нецелесообразности использования вакуумных коллекторов неверные. Обсуждение этой статьи можно почитать здесь и здесь.

Читайте также:
Строительство дома из керамзитобетонных блоков – особенности материала и нюансы использования

Для того, чтобы сделать правильный выбор, мы рекомендуем проанализировать различные коллекторы из баз данных результатов испытаний Institut für Solartechnik и Solar Keymark.

Для целей отопления необходимо примерно 2 кВт*ч энергии на 1 м²отапливаемой площади дома в сутки. Эта цифра средняя для энергоэффективного дома и температуры окружающего воздуха до -20°С. То есть за месяц для среднего дома площадью 200 м² нужно около 12000 кВт*ч энергии.

Как рассчитать систему с солнечными коллекторами?

В осенне-весенний среднемесячный приход солнечной радиации на 1м² наклонной поверхности составляет от 20 до 80 кВт*ч/месяц. Летом в пике приход солнечной радиации может доходить до 160 кВт*ч/месяц, но обычно летом не нужно нагревать здание. Даже если мы хотим получить четверть требуемой для отопления энергии (аккумулировать солнечную энергию для отопления не имеет смысла, поэтому обычно солнечное тепло добавляется в систему отопления в режиме «онлайн», т.е. только когда светит и греет солнце), нам нужно около 3000 кВт*ч тепловой энергии. При зимнем КПД системы с солнечными коллекторами максимум 50% (с учетом потерь как в самом коллекторе, так и в трубопроводах от коллектора до потребителя) для сбора такого количества энергии необходимо 3000/50*0,5=120 м² площади солнечных коллекторов. Один 20-ти трубочный вакуумный коллектор имеет полезную площадь около 1,8 м² и занимает площадь около 3м². Таким образом, потребуется 40 таких коллекторов.

Летом эти коллекторы будут выдавать в 5-8 раз больше тепловой энергии, т.е. до 24 000 кВт*ч. Для сравнения, для целей горячего водоснабжения на 1 человека при норме в 100 л/сутки горячей воды температурой 40°С требуется примерно 100*1,16*30=3,48 кВт*ч. На семью из 4-5 человек потребуется до 15-20 кВт*ч энергии. Необходимо предусмотреть, куда девать остальные 20000 кВт*ч энергии. Хорошо , если есть бассейн, который нужно греть. В противном случае нужно будет накрывать большую часть коллекторов. Хорошим решением является сезонное аккумулирование в конструкциях здания или в земле, но такие решения, естественно, потребуют дополнительных капитальных затрат.

Поэтому мы рекомендуем рассчитывать систему солнечного теплоснабжения в расчете на горячее водоснабжение, можно раза в 2 увеличить количество коллекторов для того, чтобы гарантированно обеспечить ГВС в весенне-осенний период и иметь заметную добавку к генерации тепла в зимний период. Если увеличить количество коллекторов в 3-5 раз, то можно ощутить добавку солнечного тепла в отопительный баланс в межсезонье. Большее количество солнечных коллекторов в нашем климате использовать нецелесообразно.

В зависимости от солнечной радиации и температуры окружающей среды, КПД солнечного коллектора может быть от 20-70%. Таким образом, при ярком солнце может сниматься до 650 Вт/м², а в пасмурную — 10 Вт/м². А когда в баке 50°С, при этом в пасмурную погоду в коллекторе 40°С, то в данный момент КПД коллектора = 0. Эту ситуацию можно исправить путем применения тепловых насосов, но такое решение также повышает общую стоимость системы.

Очень немногие продавцы солнечных коллекторов могут правильно (и правдиво) рассчитать систему солнечного теплоснабжения — как для целей горячего водоснабжения, так и для отопления. Мы утверждаем, что использовать солнечные коллекторы (как вакуумные, так и плоские) для ГВС в весенне-осенний период удобно и выгодно. Мы можем подобрать оптимальный состав системы для ваших конкретных целей. Опасайтесь тех, кто обещает вам за счет солнечной энергии обеспечить дом теплом зимой — в нашем климате это практически невозможно. Заполните форму заявки на подбор оборудования на нашем сайте, наши специалисты помогут вам сделать правильное решение.

Как правильно расположить солнечные коллекторы?

Солнечные коллекторы нужно ориентировать по возможности строго на юг. Однако, без существенного падения производительности можно отклониться от южного направления на 30 градусов. Для фотоэлектрических панелей можно без существенного ухудшения отклоняться до 45 градусов. Превышение этих рекомендуемых цифр сильно ухудшить эффективность системы солнечного тепло или электроснабжения.

Эта статья прочитана 17028 раз(а)!

Продолжить чтение

Нагрев воды солнечными коллекторами

Энергия Солнца на все случаи жизни Источник: Аква-терм №3 (19) май 2004 Самым простым и наиболее дешевым способом использования солнечной энергии является нагрев воды в плоских солнечных коллекторах.Принцип действия такого устройства весьма прост: видимые лучи солнца, проникая сквозь стекло (проходит…

Солнечная альтернатива газу

Солнечная альтернатива газу В.С.ИОНОВ исполнительный директор «Национального центра меди» Источник: СтройПРОФИль №2/1 2006 Солнечные системы ГВС и отопления на основе медных коллекторов – реальная экологическая альтернатива органическим видам топлива в ЖКХ События этой зимы — выяснения отношений между Украиной и…

Эффективность применения солнечных водонагревателей в климатических условиях средней полосы России Автор: О. С. Попель Институт высоких температур Российской академии наук АННОТАЦИЯ На основе математического моделирования простейшей солнечной водонагревательной установки с использованием современных программных средств и данных типичного метеогода показано, что…

Солнечные коллекторы: правда и мифы

Плоские и вакуумные солнечные коллекторы: правда и мифы Источник: svetdv.ru – сейчас уже не работает Когда нам рассказывают об очередной чудо-технологии, то обычно во всех красках расписывают достоинства и деликатно умалчивают о недостатках. Также очень часто потребителям дают нелестные отзывы…

Читайте также:
Фото красивых одноэтажных домов: экстерьер на фото

Интересные ссылки по солнечным коллекторам Солнечные коллекторы: правда и мифы. Приведено сравнение плоских и вакуумных коллекторов. Написано все, на удивление, правильно, видно что писал не журналист, а практик. Видео о солнечных коллекторах https://youtu.be/Bm-hgBhgwL0 Процесс кипячения воды в вакуумной трубке Испытания…

Вакуумные солнечные коллекторы

Солнечное тепло: горячее водоснабжение и отопление с вакуумными солнечными коллекторами В вакуумном водонагревателе-коллекторе объем, в котором находится темная поверхность, поглощающая солнечное излучение, отделен от окружающей среды вакуумированным пространством, что позволяет практически полностью устранять потери теплоты в окружающую среду за счет…

Как выбрать солнечный коллектор для отопления

по телефону: 8 (800)200-44-80 бесплатно по России; электронной почте info@andi-grupp.ru
или в чате на нашем сайте.

Лента статей RSS:
Поиск статей:

Как выбрать солнечный коллектор для отопления

Рекомендации ПК «АНДИ Групп» при выборе солнечной водонагревательной системы для горячего водоснабжения (ГВС) и отопления загородных домов, дач и коттеджей.

Производственная компания «АНДИ Групп» активно занимается внедрением и развитием энергосберегающих технологий на основе солнечных вакуумных коллекторов. Солнечные водонагревательные установки торговой марки «АНДИ Групп» успешно применяются как на бытовом, так и на промышленном уровне.

Солнечный коллектор для ГВС и отопления как выбрать?

Предлагаем ознакомиться с рекомендациями производственной компании «АНДИ Групп» по выбору солнечной водонагревательной системы для горячего водоснабжения (ГВС) и отопления загородных домов, дач и коттеджей.

Солнечные сплит-системы могут полностью обеспечить Вас горячим водоснабжением (ГВС), но не смогут полностью заменить традиционные источники тепла для отопления помещения. Они точно помогут Вам сэкономить ресурс существующего котла и потребляемого им энергоресурса, такого как: газ, жидкое или твёрдое топливо, электроэнергия (от 30 до 60% в год).

Выбор объёма солнечного водонагревателя для горячего водоснабжения.

Для обеспечения ГВС Вам необходимо учитывать, что, как правило, солнечные системы (из-за их инертности) устанавливаются из расчёта расхода горячей воды 100 литров на 1 человека (при средней норме 50-60 л/чел. в день для магистральных систем многоквартирных домов). Мощности стандартной 300 -литровой системы будет достаточно для нагрева 300 литров воды в диапазоне +35-70°С в течение светового дня (в зависимости от исходной температуры воды, времени года и погоды).

О возможности применения солнечной сплит-системы для отопления дома.

Для расчёта системы солнечных коллекторов, необходимых для поддержания отопления Вашего здания надо знать тепловые потери с кв. метра площади, площадь дома, объём теплоносителя, имеющегося у Вас в системе отопления. Как правило, системы, рассчитанные на применение для отопления, должны быть специально спроектированы под конкретный объект. Для прикидочного расчёта Вам может быть достаточно нижеприведённой информации:

Для отопления Вам может понадобиться в зависимости от степени утепления здания бойлер объёмом не менее 3-х кратного объёма теплоносителя, используемого в имеющейся у Вас системе отопления, при стандартных потолках высотой 2,5-2,8 м.. Т.е., если у Вас в системе отопления циркулирует 100 литров теплоносителя, то Вам будет необходима система с бойлером объёмом не менее 300 литров. Количество вакуумных трубок, от которых зависит непосредственно тепловая производительность системы, будет подбираться в зависимости от индивидуальных особенностей Вашего дома. При этом надо понимать, что увеличивать мощность стандартной системы более, чем в два раза не рекомендуется, т.к. это повлечёт за собой проблемы с утилизацией тепла в летний период (надо будет либо закрывать часть коллекторов либо сбрасывать тепло в бассейн и т.п. место).

Мы предлагаем в любом случае переходить на альтернативные источники энергии поэтапно. Это позволит не только избежать чрезмерных затрат на приобретение и монтаж оборудования, но и предоставит возможность проверить на собственном опыте эффективность этого решения.

В качестве пробного шага Вы можете сперва установить сплит-систему в стандартной комплектации (12 вакуумных трубок на 100 литров емкости бака), т.е., вполне вероятно, что для Вашей системы отопления и Вашего климата будет наиболее подходить система с 300 л. баком, в стандартной комплектации к которой идет два коллектора по 18 трубок каждая (всего 36 трубок).

Если в ходе эксплуатации выяснится, что этого недостаточно – можно будет добавить ещё один-два таких же коллектора вакуумных трубок, либо другой коллектор, но с общим количеством не более 72 трубок.

Ещё надо иметь в виду, что эффективность солнечных систем в декабре и январе будет очень мала (самые короткие дни, Солнце проходит низко над горизонтом). Т.е. рассчитывать на обеспечение одновременно ГВС и отопления за счёт этого источника в течение данного времени не приходится (если не подключать дополнительный источник тепла).

солнечная сплит-система Стандарт

В стандартной комплектации сплит-система «Стандарт» (ГВС + отопление) включает в себя:

  • Накопительный двухконтурный стальной бак с двумя медными теплообменниками
  • Рабочую станцию, которая включает в себя:

контроллер SR868C8Q; циркуляционный насос; расходомер; группу безопасности с манометром, предохранительным клапаном и арматурой для присоединения расширительного бака, заправки и промывки замкнутого теплового контура солнечного коллектора (коллекторов) и накопительного бака; крепление на стену, теплоизоляционную оболочку, расширительный бачок (объём расширительного бака – в зависимости от объёма сплит-системы);

  • Солнечный коллектор SCH состоящий из:

Дополнительно Вам понадобится:

  • специальный теплоноситель для солнечных коллекторов, работоспособный в температурных интервалах от минус 60 до плюс 270 градусов Цельсия;
  • труба, соединяющая коллектора с баком;
  • утеплитель на эти трубы (для прокладки по улице, для прокладки по помещению)

Необходимый объём теплоносителя, длина и диаметр медных или нержавеющих труб, количество утеплителя, способного выдерживать температуру до 200 градусов Цельсия – определяются в зависимости от протяжённости магистралей от коллекторов до бойлера (бака-накопителя).

ВАЖНО! Необходимо понимать, что солнечная сплит-система системы «Стандарт», имеющая в своём составе только один накопительный бак (бойлер), даже с несколькими теплообменниками, не сможет одновременно обеспечивать Вас ГВС и отоплением.

Для одновременного решения нескольких задач (обеспечение ГВС, поддержка системы отопления, системы тёплого пола) могут применяться более сложные системы «ЭЛИТ», предлагаемые нашей компанией и укомплектованные бойлерами различных модификаций, произведёнными в Италии под торговой маркой «АНДИ Групп». Это могут быть бойлеры моделей «Sigma» и «Inox Tank» (системы бак в баке) либо бойлеры моделей «Omicron» и целого ряда других, имеющих поистине уникальные возможности за счёт применения инновационных технологий по разделению и направлению водных потоков внутри бака.

Читайте также:
Топиарий из шишек: мастер-класс с фото и видео

Во время Вашего обращения наши специалисты могут проконсультировать Вас по выбору необходимого именно Вам комплекта оборудования, чтобы с учётом Ваших пожеланий и финансовых возможностей максимально эффективно решить поставленные Вами задачи. Мы рады будем видеть Вас в числе наших довольных клиентов.

Мы не торгуем качеством. Мы поставляем качественное оборудование! Главная рекомендация от Производственной компании «АНДИ Групп» помните, что Удовольствие от хорошего качества длится дольше, чем радость от низкой цены!

Обращаем Ваше внимание , что некоторые компании в обозначениях продукции используют маркировку торговой марки «АНДИ Групп», при том, что технические параметры коллекторов с аналогичным названием отличаются в худшую сторону (меньше площадь поглощения, теплоизоляция манифольда стекловата, другая толщина и другой материал опорной рамы и т.п.).

ВАЖНО! На манифольде солнечного коллектора и баках торговой марки «АНДИ Групп» стоит логотип компании. Каждая наша трубка имеет гравировку лазером торгового знака и номера телефона нашей компании +7(495)748-11-78 в нижней части трубки в районе индикатора вакуума.

ЗАКАЗАТЬ РАСЧЁТ

Заказать расчёт гелиосистемы

Если выбор солнечной сплит-системы вызывает у Вас затруднение, оставьте заявку на расчёт и квалифицированные специалисты нашей компании помогут подобрать солнечную водонагревательную систему удовлетворяющую Вашим потребностям.

Заказать расчёт

Заинтересовались?

Для получения подробной информации обратитесь к нам удобным для Вас способом:

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Все чаще современные строители и дизайнеры обращаются к энергосберегающим конструкциям, экологически чистым материалам и альтернативным источникам энергии. Особенно важным является именно последний пункт, поскольку отопление частного дома и нагрев воды при использовании традиционных способов обходится совсем не дешево.

Содержание:

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Одним из вариантов таких источников является солнечный свет, а оборудование, которое превращает солнечную энергию в тепловую, называется коллектором. На современном рынке представлено несколько видов солнечных коллекторов, которые отличаются между собой мощностью, габаритами, КПД, сферой применения и т.д.

Какие бываю солнечные коллекторы?

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Условно всех их можно поделить на вакуумные трубчатые и плоские.

Плоские коллекторы используются чаще трубчатых, что в большинстве случаев можно объяснить более доступной ценой. Обычно они служат для нагрева воды, потому что для отопительного оборудования у них слишком низкий КПД, особенно зимой.

Плоские коллекторы в свою очередь делятся на 3 типа:

  • коллекторы с абсорбером с селективной оболочкой;
  • вакуумные коллекторы;
  • коллекторы с абсорбером, имеющим оболочку из черного лака.

Первый тип используется только для нагрева воды преимущественно в теплое время года. КПД таких коллекторов довольно низкий – всего 25-35%, к тому же есть опасность образования конденсата на их поверхности. Монтируются они над кровельным материалом или вровень с ним.

Второй тип – вакуумные коллекторы – обладает более высоким КПД, достигающим 45%. Вакуумные коллекторы надежно защищены от образования конденсата и попадания в них пыли. Правда, некачественные изделия могут довольно быстро разгерметизироваться, что скажется на их работе. Чтобы они снова заработали на полную мощность, нужно будет восстановить вакуум, что своими силами достичь практически невозможно. Стоят вакуумные коллекторы дороже, чем коллекторы с селективной оболочкой, но поскольку они более мощные, их площадь меньше.

Третий тип – коллекторы с абсорбером, покрытым черным лаком – имеет теплопотери, на 50% превышающие теплопотери первого типа.

Монтаж солнечных коллекторов

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Монтаж солнечных коллекторов может осуществляться над кровельным материалом, вровень с ним или же на специальной конструкции. Выбор места расположения зависит от типа крыши, ее конструкции, наклона скатов, а также их ориентации относительно сторон света.

Над кровельным материалом коллекторы можно устанавливать, если крыша скатная, а угол наклона ската достаточно большой. В этом случае они монтируются с помощью специальных профилей или кронштейнов, которые крепятся к доскам контробрешетки или стропилам. Вся конструкция должна выступать за края черепицы, чтобы не нарушать герметичности кровельного слоя. Коллектор может закрепляться как непосредственно на кронштейнах, так и на монтажных профилях, прикрепленных к кронштейнам. Для защиты от ветра могут использоваться также дополнительные накладки или специальные элементы. Если коллекторов несколько, между собой они соединяются гофрированными трубками. Чтобы избежать накопления воздуха внутри коллекторов, они слегка наклоняются в сторону, противоположную подсоединению. К системе отопления или нагрева воды коллекторы подключаются с помощью гофрированных труб, выполненных из нержавеющей стали. Трубы эти подводятся к коллекторам через вентиляционные каналы. Преимуществами такого монтажа является его быстрота, небольшая стоимость работ и вывод соединительных патрубков наружу. К недостаткам можно отнести значительные теплопотери.

Читайте также:
Характеристики напорных труб из полиэтилена, способы соединения и монтажа

Коллекторы, смонтированные вровень с кровельным материалом, смотрятся более привлекательно, кроме того, в этом случае под ними не нужно укладывать сам кровельный материал, что сокращает расходы на него. Крепятся они к доскам обрешетки специальными зажимами. Здесь нужно проследить, чтобы стыки коллекторов и кровли не имели зазоров, а были герметичными. Угол наклона ската при этом должен быть не менее 25°. Стоимость монтажа коллектора вровень с кровлей стоит дороже, чем его монтаж над кровлей.

Коллекторы на специальных конструкциях обычно устанавливаются на плоских крышах. Плюсом таких установок является наиболее простой и быстрый монтаж, а также возможность изменения угла их наклона в соответствии с климатическими условиями и ориентацией относительно сторон света. Оптимальным углом наклона считается угол в 45°. Если на одной крыше устанавливаются несколько коллекторов, причем располагаются они один за другим, то нужно соблюдать дистанцию между ними, при которой передние коллекторы не будут затемнять задние. Минимальное расстояние между ними зависит от угла наклона и должна превышать высоту не менее чем в 1,5 раза. Для лучшей фиксации конструкции и защиты от ветра она монтируется на бетонных плитах или ящиках со щебнем. Герметичность кровельного слоя в этом случае не нарушается, зато увеличивается нагрузка на крышу и несущие элементы, поэтому перед установкой нужно проконсультироваться с архитекторами и выяснить, вынесет ли конструкция дома такие дополнительные нагрузки.

Каким должен быть угол наклона коллектора?

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Угол наклона коллектора – еще одна немаловажная его характеристика. Этот параметр определяет количество солнечных лучей, которые падают на поверхность коллектора на протяжении светового дня, от чего напрямую зависит его эффективность. Конечно, солнце на протяжении суток и в разное время года меняет свое положение, так что улавливать постоянно максимальное количество солнечной энергии коллектор не может. Здесь нужно подбирать такой его наклон, который бы обеспечил максимально возможное его освещение в любое время. Для примера, коллекторы для нагрева воды должны устанавливаться под углом 45°, что составляет среднее значения между оптимальными углами наклона в летнее (30°) и зимнее (60°) время года. Регулировать наклон можно только у коллекторов, смонтированных на плоских крышах – на скатных крышах этот параметр определяется конструкцией кровли. Но это не значит, что такие коллекторы неэффективны. При наклоне в диапазоне 35-50° их КПД незначительно отклоняется от максимального значения.

Для наиболее эффективной работы коллекторы желательно ориентировать на юг, если позволяет конструкция крыши (особенно это касается скатных крыш). В противном случае их КПД значительно уменьшится, что особенно ощутимо зимой, и не поможет даже увеличение площади коллекторов. Если коллекторы используются только для нагрева воды, их можно ориентировать между юго-западным и юго-восточным направлением.

При использовании нескольких коллекторов, соединенных между собой, все они должны быть направлены в одну сторону. Если же разместить их под разными углами и развернуть в разные стороны, каждый из них будет регулировать отдельный поток теплоносителя, то есть такая система не будет работать, как одно целое, а поделится на несколько самостоятельных систем.

Какой должна быть площадь коллектора? Формула расчета

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Площадь солнечных коллекторов зависит от необходимой для нагрева воды или отопления мощности, интенсивности солнечного излучения для данной территории, КПД каждого коллектора, входящего в состав системы, доли энергии солнца в покрытии потребности в тепле, а также теплопотерь. Производители солнечных коллекторов рассчитывают их площадь и количество с помощью специальных программ, используя различные графики и диаграммы. Но для вычисления площади коллекторов небольшого для частного дома не обязательно углубляться в сложные и малопонятные расчеты, достаточно использовать формулу:

А – площадь коллекторов, м2;

AW – приведенная площадь, которая способна генерировать 1кВт•час за один день, м2•день/(кВт•час);

Η – КПД одного коллектора, %;

G – полное излучение солнца за один день, характерное для данной местности, кВт•час/(м2•день);

К – коэффициент, учитывающий величину угла наклона коллекторов и их ориентацию относительно сторон света (выбирается из таблицы);

F – энергия, необходимая для нагрева воды или отопления дома на одни сутки, кВт•час/день;

SF – доля энергии солнца в покрытии потребности в тепле, %.

Доля солнечной энергии – это та часть энергии, которую производит солярная установка, от общей энергии, затрачиваемой на обогрев или нагрев воды. Обычно ее значение составляет от 60 до 70% от годового потребления энергии. Солярные установки с большей долей солнечной энергии используются в паре с вспомогательными газовыми котлами, работающими на низком уровне.

Данные, необходимые для проведения расчета площади, могут значительно отличаться между собой в зависимости от типов коллекторов, их моделей и производителей.

Установка солнечных коллекторов. Видео

Солнечный коллектор – массивный прибор, использующий даровую энергию солнца для разогрева теплоносителя (жидкости). Применяется для приготовления теплой.

При расчете вытяжки для кухни следует использовать уже готовые формулы Кухня – это любимое место каждой хозяйки. Здесь мы готовим, обедаем всей семьей и.

Металлические трубы, что традиционно применялись для сооружения водопровода, теперь уже рассматриваются не столь актуальным материалом, как это было.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: