Устройство вакуумного солнечного коллектора с трубками

Вакуумный солнечный коллектор, как определить тепловую мощность? В догонку, много много букв: ⁠ ⁠

Как подобрать солнечный коллектор? Как определить, сколько тепловой энергии можно получить от одной трубки солнечного коллектора? От одного квадратного метра солнечного коллектора? Какова эффективность солнечного коллектора в конкретном регионе?

Метод расчета тепловой мощности солнечного коллектора для определенного региона.

Мы предлагаем простой способ, позволяющий на основе данных о солнечной активности в заданном регионе и площади поглощения солнечного коллектора, произвести ориентировочный расчет количества тепловой энергии, которое можно получить в конкретном регионе: от одной трубки солнечного коллектора, одного квадратного метра солнечного коллектора, за день, дачный сезон, за год. Чтобы оценить, насколько полно солнечный коллектор может обеспечить нас тепловой энергией используем следующие статистические данне. По статистике, “обычное” домохозяйство использует 2- 4кВт тепловой энергии для потребления горячей воды, на человека в день.

Исходные данные для расчета тепловой мощности солнечного коллектора.

Количество тепловой энергии, которое вырабатывает солнечный коллектор, зависит от:

1) Региона эксплуатации солнечного коллектора

2) Площади поглощения солнечного коллектора

4) Угла наклона солнечного коллектора по отношению к солнечному излучению

Принимаем:
1) Нам известно количество солнечной энергии на поверхности земли – инсоляция квадратного метра за год, для определенного региона России.
Напомним, что инсоляция одного квадратного метра, в разрезе регионов России, указана в таблицах, которые приведены в статье “Количество солнечной энергии в регионах России”.

“Показательные” расчеты будем проводить для Москвы и Московской области, а потом потренируемся на расчетах для Краснодара.

2) Площадь поглощения известна из документации.

3) КПД вакуумного солнечного коллектора принимаем ~ 67% – 80%*.

4) Принимаем угол наклона “плоскости” солнечного коллектора к солнцу – оптимальный для данного региона.

* КПД = 67% – это значение для “среднестатистического” коллектора, которое приводят в технической литературе для “старых” моделей. КПД современных коллекторов достигает 85%. Мы применили в расчетах среднестатистический КПД = 67% для получения более “честных” значений. В результате все показатели получились немного заниженными, по сравнению со значениями, полученными нами при испытаниях реальной вакуумной трубки солнечного коллектора – одной из тех, что мы предлагаем в магазине.

При упоминании вакуумных трубок, имеем в виду “стандартные” вакуумные трубки, которые используют большинство производителей, с характеристиками:

Длина – 1800±5мм
Внешний диаметр трубки – 58±0.7мм
Толщина внешней стеклянной трубки – 1.8±0.15мм
Внутренний диаметр трубки – 47±0.7мм
Толщина внутренней стеклянной трубки – 1.6±0.15мм
Материал стекла – боросиликатное стекло 3.3мм
Уровень вакуума -между стенками трубки P 5 х 10-3Па
Степень поглощения > 91%
Потери солнечного излучения < 8% (80С±1,5С)
Макс. температура 270С – 300С
Номинальное давление – 0.6МПа
Средний коэффициент тепловых потерь – 0.6W/(m2)
Трехслойное покрытие вакуумной трубки – улучшенное селективное поглощающее покрытие:

Композит – медь, нержавеющая сталь, алюминий (CU/SS-ALN(H)SS/ALN(L)/ALN)
Метод нанесения – DS реактивное напыление.
На заметку.

Если для Вашего региона нет точных данных в таблицах, то можно использовать информацию, указанную на карте инсоляции регионов России в статье Количество солнечной энергии в регионах России (Нажмите на названии, чтобы прочитать) , на которой цветом указано ориентировочное значение доступной энергии на одном квадратном метре горизонтальной площадки.

Для определения инсоляции для оптимального угла наклона “плоскости” вакуумного коллектора, эмпирическим путем мы установили, для того чтобы перевести количество энергии указанное для горизонтальной площадки, в энергию, получаемую с площадки с оптимальным углом наклона, необходимо значение, указанное для горизонтальной площадки умножить на 1,2.

Например, для Москвы в таблице “Дневная сумма солнечной радиации, кВт*ч/м2 горизонтальная площадка” указано среднесуточное (доступное в течение суток) значение энергии солнечного излучения = 2,63кВт*ч/м2. То есть, в год доступно для горизонтальной площадки 2,63 * 365(дн) = 959,9кВт*ч/м2. Для оптимальной площадки – из таблицы “Месячные и годовые суммы солнечной радиации, кВт*ч/м2. Оптимальный наклон площадки” видим, что в год для Москвы, в случае оптимального угла наклона, доступно 1173,7кВт*ч/м2. Вычисляем коэффициент для оптимальной площадки 1173,3 / 959,9 = 1,22.

Метод не претендует на высоконаучный, но, как говориться, лучше иметь не очень точный инструмент, чем не иметь никакого.

Для начала проверим, насколько соответствует действительности значение площади поглощения трубчатого вакуумного солнечного коллектора, указываемое производителями и поставщиками.

В документации на “Водонагреватель, на солнечном коллекторе без давления из 15-ти вакуумных трубок”, то есть на модель “Дача-1”, указана площадь поглощения 2,35м2.

Известно, что длина вакуумной трубки 1800мм, то есть 1,8м.

Диаметр трубки 58мм. то есть 0,058м.

Трубка вакуумного коллектора – это цилиндр, площадь боковой поверхности цилиндра вычисляется по формуле:

S = 2*3,14*H*R или через диаметр S = 3,14*H*D

где 3,14 – число Пи, R – радиус цилиндра, H – высота цилиндра(длина стороны), D – диаметр цилиндра. Диаметр трубки нам известен, поэтому воспользуемся формулой, в которой участвует диаметр.

Площадь трубки = 3,14 * 1,8 * 0,058 = 0,3278м2

Принимаем с округлением, что площадь одной трубки вакуумного солнечного коллектора равна 0,33м2. Тогда, площадь всех трубок солнечного коллектора = 0,33*15 = 4,95м2.

Трубки солнечного коллектора преобразуют излучение в тепло всей площадью, однако наиболее эффективно преобразование на освещенной стороне трубок, то есть, чтобы определить площадь поглощения, надо разделить общую площадь трубок коллектора на 2. Получаем площадь поглощения всех трубок солнечного коллектора из 15-ти трубок 4,95м2 / 2 = 2,47м2. В документации на солнечный коллектор указана площадь поглощения 2,35м2.

То есть, в документации на солнечный коллектор указана информация о площади поглощения с учетом того, что часть каждой трубки вставлена в бак коллектора, а часть закрыта фиксатором – креплением на раму.

1. В документации на солнечные коллекторы действительно указана именно поглощающая площадь солнечного коллектора.

2. Если брать за основу технические данные из документации реального коллектора, то площадь поглощения одной трубки можно определить, используя эти данные. Тогда, если 15-ть трубок составляют 2,35м2 поглощающей площади, то одна трубка 2,35м2 / 15 = 0,156(6)м2 или округленно 0,15м2.

I. Площадь поглощения одной трубки = 0,15 м2

3. Зная площадь поглощения одной трубки, можно определить, сколько трубок составляют один квадратный метр поглощающей поверхности солнечного коллектора. Это интересно, так как во всех таблицах солнечной энергетики приводятся данные в расчете на 1м2. Итак, 1м2 / 0,15м2 = 6,66(6), то есть округленно – один квадратный метр поглощающей поверхности коллектора – это семь вакуумных трубок солнечного коллектора.

Читайте также:
Что такое камины с водяным отоплением

II. 1м2 поглощающей поверхности солнечного коллектора = 7 вакуумных трубок

4. Тепловая мощность одной вакуумной трубки. Эта информация позволит рассчитывать, какое количество трубок должно быть в солнечном коллекторе для получения необходимой тепловой мощности:

4.1. Дневная мощность = 0,15 х Величину дневной инсоляции 1м2 для рассчитываемого региона х КПД

4.2. Годовая мощность = 0,15 х Величину годовой инсоляции 1м2 для рассчитываемого региона х КПД

Для Москвы годовая мощность – энергия, получаемая за счет каждой вакуумной трубки, составляет:

Площадь поглощения одной трубки х Годовую инсоляцию в Москве х КПД коллектора

Устройство вакуумного солнечного коллектора с трубками

Вакуумный солнечный коллектор с трубками – экологичный способ накопления энергии солнца и использования ее для теплоснабжения дома и обеспечения горячей водой. Размещаются такие устройства на крыше частных домов в правильно выбранном месте.

Что такое коллектор и назначение солнечных коллекторов

Под солнечным коллектором понимают устройство, которое собирает энергию излучения, а затем перемещает накопленную теплоту потребителям. На практике используют еще один термин – гелиоколлектор.

По назначению солнечные установки (гелиоустановки) использования подразделяют:

  • гелиоконцентраторы – устройства, собирающие солнечную энергию в узкий поток. Их используют для плавки металла. В институте НПО «Физика-Солнце» (г. Ташкент) были разработаны и изготовлены плавильные печи, в которых достигнуты температуры более 5000…5500 °С;
  • солнечные батареи – устройства для преобразования излучения от Солнца в электрическую энергию;
  • гелиоопреснительные установки – машины, предназначенные для получения пресной воды из воды с высоким содержанием минеральных солей;
  • гелиосушильные установки – тепловые устройства, в которых осуществляется удаление влаги из овощей и фруктов с использованием энергии Солнца;
  • гелионагреватели (воздушный солнечный коллектор) – установки для передачи теплового потока от инфракрасного излучения к теплоносителям.

Принцип работы вакуумного солнечного коллектора

От обычных гелиосистем вакуумный солнечный коллектор отличается способом переработки солнечной энергии. Классическая батарея просто принимает свет и преобразовывает его в электричество. Коллектор же состоит из стеклянных трубок с воссозданным внутри вакуумом. В единую систему они объединяются посредством специальных стыковочных узлов.

Внутри каждой трубки располагается канал из одного или двух медных стержней с теплоносителем. Улавливая солнечные лучи, действующий элемент нагревает материал-теплоноситель, таким способом обеспечивая работу коллектора.

3_0.jpg

Вакуумный солнечный коллектор, размещенный на крыше частного дома, будет обеспечивать горячей водой жильцов на протяжении всего года, а в сезон холодов позволит комфортно отапливать помещение, не затрачивая на это больших финансовых средств

За счет такой конструкции уровень энергоотдачи значительно возрастает, а теплопотери существенно снижаются, так как вакуумная прослойка позволяет сохранить около 95 % улавливаемой солнечной энергии.

Кроме того, уменьшается зависимость производительности коллектора от сезонности, температуры окружающей среды и различных погодных условий, как то: порывы ветра, переменная облачность, выпадение осадков и пр.

Достоинства и недостатки

Главными достоинствами считаются:

  1. Низкая парусность и высокая надежность. Практически все детали и элементы солнечных коллекторов, которые контактируют с теплоносителями, выполняются из меди высокого качества. Ударопрочное стекло трубок позволяет противостоять ударам крупного града. Солнечные нагреватели такого типа распространены в регионах с непостоянным и суровым климатом. При необходимости замены одной из трубок не придется полностью останавливать и сливать всю систему. При сильном ветре и ураганах, они способны выдерживать колоссальные нагрузки, а за счет низкой парусности, их не сорвет порывом ветра.
  2. Простота транспортировки и монтажа. При перевозке коллектора не придется переживать за его сохранность, т.к. трубки имеют малый вес и собираются в единую конструкцию только на месте установки. Такой вид транспортировки позволяет максимально быстро доставить коллектор без повреждений. Трубки оборачиваются материалом, сохраняющим их в целости и сохранности на протяжении всей перевозки.
  3. Высокая эффективность. Начиная с раннего утра при первых солнечных лучах, коллектор начинает собирать энергию, что позволяет пользоваться теплом и горячей водой в любое время суток (за ночь остывать практически не успевает).
  4. Коллектор препятствует образованию в устройстве микробов. Это обусловлено обеспечением высоких температур, при которых размножение бактерий становится невозможным.
  5. Работоспособность в зимнее время. Несмотря на морозы до -35°С, коллектор прекрасно справляется со своими обязанностями. Благодаря цилиндрической форме трубок солнечная энергия преобразовывается в тепловую максимально быстро, поэтому данный вид коллектора является наиболее производительным в любое время года.
  6. Низкие показатели теплопотери. Вакуум – это лучший теплоизолятор, который позволяет максимально долго сохранять тепло. Благодаря этому КПД будет высоким даже в пасмурную погоду. Информация о том, что в пасмурную погоду коллектор неэффективен – это миф. Солнечная энергия способна проникать сквозь тучи, а трубки коллектора обладают свойством их принимать.
  7. Прекрасное соотношение низкой цены и высокого качества. За сет простоты устройства, коллекторы имеют довольно низкую себестоимость, что позволяет каждому его приобрести.

Минусов на настоящий момент не выявлено. Все, что говорят и пишут негативного о данном виде коллекторов, является неправдой.

Разновидности вакуумных коллекторов

raznovidnosti-vakuumnyh-kollektorov.jpg

Разновидности вакуумных коллекторов

В конструкции коллекторов используются два типа стеклянных трубок:

  • коаксиальные;
  • перьевые.

Ознакомимся подробнее с каждым из них.

Трубка коаксиальная

Это своего рода термос, который состоит из двойной колбы. Наружная колба покрывается специальным веществом, поглощающим тепло. Между двумя трубками создается вакуум. Это позволило добиться того, что тепло при работе передается непосредственно от стеклянных колб.

Обратите внимание! В вакуумных коллекторах используется специальное стекло, изготовленное из боросиликатов. Такой материал пропускает большее количество солнечной энергии.

Внутри каждой трубки находится еще одна – медная (ее заполняют эфирной жидкостью). При повышении температуры эта жидкость испаряется, передает накопленное тепло и стекает обратно в виде конденсата. Далее цикл повторяется снова и снова.

Трубка перьевая

Такого рода трубки состоят из одностенной колбы. К слову, по толщине стенок они существенно превышают коаксиальные аналоги. Медная трубка усиливается специальной гофрированной пластиной, обработанной влагопоглощающим веществом. Выходит, что воздух в данном случае выкачивается из всего теплового канала.

Читайте также:
Сравнительная плотность пеноблоков

Такие каналы, к слову, тоже бывают разными:

  • прямоточными;
  • «Хит пайп».

Каналы типа «Хит пайп»

teploobmen-v-vakuumnom-solnechnom-kollektore-tipa-heat-pipe.jpg

Теплообмен в вакуумном солнечном коллекторе типа “Heat Pipe”

Другое их название – тепловые трубы. Они работают следующим образом: эфирная жидкость в закрытых трубах при повышении температуры поднимается вверх по каналу, после чего конденсируется там в специально оборудованном теплосборнике. В последнем жидкость передает тепловую энергию и опускается вниз по трубке. Из теплосборника тепло передается дальше в систему при помощи циркулирующего теплоносителя.

koaksialnaya-vakuumnaya-trubka-heat-pipe-s-2-trubnym-manifoldom.png

Коаксиальная вакуумная трубка heat-pipe с 2-трубным manifold’ом

Характерно, что металлические трубки здесь могут быть не только медными, но и алюминиевыми.

Прямоточные каналы

В каждом из таких каналов в стеклянной трубке находятся сразу два металлических патрубка. По одному из них жидкость попадает в колбу, нагревается там и выходит по второму.

Сравнение различных модификаций

При изготовлении гелиоагрегатов тепловые каналы и вакуумные стеклянные трубки для солнечных коллекторов комбинируют в самых разных сочетаниях.

Самой большой популярностью у потребителей пользуются коаксиальные модели с тепловым каналом heat pipe. Покупателей привлекает лояльная цена приборов и очень простое, доступное обслуживание в течение всего срока эксплуатации.

vakyymniysolnechniycollektor010-430x302.jpg

Вакуумный солнечный коллектор с рабочим каналом heat pipe прекрасно ремонтируется. Замена поврежденных трубок осуществляется на месте и не предусматривает демонтажа системы или переноса ее на другое место. Однако теплообмен в этих моделях осуществляется сложно, за счет чего и КПД на выходе составляет не более 65%

Вакуумные приборы с каналами heat pipe демонстрируют высокую надежность и не имеют никаких ограничений по использованию даже в высоконапорных гелиотермальных комплексах.

Приборы с коаксильной колбой, содержащей прямоточные U-образные каналы, тоже входят в перечень востребованных. Их характеризуют такие параметры, как низкая теплопотеря и КПД от 70% и выше.

vakyymniysolnechniycollektor011-430x350.jpg

Для корректного функционирования, вакуумный прибор с U-каналом нужно правильно установить. Желательно, чтобы минимальный угол наклона составлял не менее 20⁰. Только в таком варианте получится обеспечить максимальную отдачу

Ситуацию несколько портят: сложный процесс ремонта, специфическое обслуживание в процессе эксплуатации и невозможность заменить отдельный испорченный узел. Если с прибором что-то случается, его демонтируют и на место ставят абсолютно новый коллектор.

Перьевые трубки конструкционно представляют собой одинарный цилиндр из стекла с утолщенными прочными стенками (в зависимости от производителя от 2,5 мм и выше). Содержащаяся внутри вставка из перьевого абсорбента плотно облегает рабочий канал, изготовленный из теплопроводящего металла.

Почти безупречную изоляцию создает вакуумное пространство внутри стеклянной емкости. Абсорбент передает поглощенное тепло без потерь и обеспечивает системе КПД до 77%.

vakyymniysolnechniycollektor012-1-430x291.jpg

В случае неисправности коллекторы, оснащенные перьевыми трубками, подлежат ремонту. Менять всю систему не требуется, достаточно обнаружить поврежденный узел, демонтировать его и поставить на это место новый

Модели с перьевым элементом стоят несколько дороже, нежели коаксиальные, но за счет высокой эффективности обеспечивают полноценный комфорт в помещении и быстро окупаются.

Наиболее эффективными и производительными являются перьевые колбы с внутренними прямоточными каналами. Их фактический КПД порой достигает рекордных показателей в 80%.

vakyymniysolnechniycollektor013-430x346.jpg

При монтаже перьевых трубок в раму на стержень каждой детали одевают прочную обжимную гайку с кольцом и термостойкой прокладкой. Это обеспечивает герметичность всей конструкции и дает возможность коллектору полноценно функционировать в любых условиях

Цена изделий довольно высока, а при проведении ремонта обязательно требуется сливать из системы весь теплоноситель и только потом приступать к устранению неполадок.

Изготовление вакуумного коллектора своими руками

Важно! Сделать солнечный коллектор своими руками вакуумного типа крайне сложно. Затраты могут быть весьма высокими.

Вакуумный солнечный коллектор своими руками изготовить можно. Потребуется приобрести стеклянные трубки для молочной промышленности или доильных установок. Они реализуются вместе со специальными резиновыми патрубками, с помощью которых могут монтироваться в разные монтажные схемы.

Внутри стеклянных труб потребуется расположить стальные или медные трубки, окрашенные в черный цвет. Сварку или пайку придется дополнительно защищать теплоизолирующими лентами, например, вырезанными из вспененного полиэтилена.

Изготавливая солнечный коллектор вакуумного типа, потребуется произвести откачку воздуха из стеклянных труб. Откачку воздуха выполняют с помощью вакуумного насоса. Здесь понадобится использовать специальный штуцер, который плотно закроется сразу после отсоединения всасывающего трубопровода от вакуум-насоса. Современные пластинчатые устройства позволяют получать разряжение до 25…30 % от исходного атмосферного значения.

Перед началом работ следует оценить свои силы. Подобные устройства довольно дороги в изготовлении. Здесь нужны не только дорогие инструменты и приспособления. Нужен еще и навык выполнения работ с вакуумными установками.

Можно собрать установку из готовых элементов:

statya_6_ris_10.jpg

  1. Изготавливают раму для монтажа.
  2. Ориентируют ее относительно сторон света.
  3. Приобретают коаксиальные трубки в сборе с теплообменниками.
  4. Производят монтаж подводящих и отводящих трубопроводов.
  5. Устанавливают вакуумные трубки и соединяют их с магистральными трубопроводами.
  6. Выполняют работы по тепловой изоляции всех точки стыковки колб и трубопроводов.

Особенности правильного расположения вакуумного солнечного коллектора

Для того, чтобы вакуумный солнечный коллектор работал с максимальной эффективностью необходимо правильно расположить его в пространстве. Для северного полушария плоскость внешнего блока должна быть обращена на юг. Также имеет значение угол его наклона к горизонту. Он должен равняться широте местности, на которой происходит установка агрегата.

Кроме географических особенностей, необходимо учитывать геометрию крыши, где он устанавливается. Установить коллектор нужно таким образом, чтобы тень от надстроек крыши не падала на него ни при каких обстоятельствах.

Таким образом, солнечный коллектор вакуумного типа является эффективным решением для отопления и снабжения дома горячее водой. Однако его конструктивные особенности и зависимость от движения солнца, которое является для него источником энергии, требует соблюдения ряда особенностей при его монтаже.

Вакуумный солнечный коллектор для отопления дома

Оглавление статьи: Вакуумный солнечный коллектор для отопления дома

В условиях непрекращающегося роста тарифов ЖКХ экономия на отоплении и горячем водоснабжении — насущный вопрос многих домохозяйств. С развитием технологий появляются новые альтернативные способы получения энергии из света, обеспечивающие максимальный эффект при минимуме теплопотерь. Один из таких способов — вакуумный солнечный коллектор. Его можно и собрать самостоятельно, и приобрести готовые варианты у продавцов.

Читайте также:
Чем покрасить внутри микроволновку: какую выбрать краску, как правильно покрасить, уход после окрашивания

солнечный коллектор

Принцип работы

Идея улавливать и преобразовывать световую энергию не нова. В мире достаточно давно и успешно эксплуатируются ветряные электростанции и солнечные батареи, последние в регионах с большим количеством ясных дней позволяют обеспечивать практически полностью автономное снабжение жилищ, коммерческих помещений и техники.

ветряные электростанции

Классическая гелиобатарея принимает и конвертирует в электричество падающий на нее свет. Далее энергия поступает к потребляющим аппаратам. Вакуумный гелиоколлектор устроен иначе: он состоит из крепких стеклянных трубок с откачанным для образования вакуума воздухом. Трубки объединены в систему.

Внутри такой стеклянной трубки находятся один-два медных стержня с заключенным в них теплоносителем. Падающие на медь лучи разогревают ее, и тепло передается носителю. Таким образом улавливается и накапливается солнечная энергия. Конструкция позволяет обеспечить высокую энергоотдачу при низких потерях. Происходит это благодаря вакууму: поскольку нет отнимающей тепло среды, практически все оно остается в носителе. Такой солнечный коллектор сохраняет примерно 95 % уловленной им энергии.

Схема 1

В качестве теплоносителя может использоваться жидкость или воздух. Первый вариант встречается чаще всего.

Конструктивное решение также снижает зависимость от погоды и окружающей температуры. Зимой комплекс будет работать так же эффективно, как и летом. При текущих темпах неуклонного роста цен на органические энергоносители гелиоустановка для отопления дома окупится, в среднем, через 3–5 лет, а прослужит около 25. То есть ее владелец спустя относительно недолгое время станет получать энергию бесплатно.

Рабочие температуры

Коллекторы делятся на виды по температуре рабочей среды:

  • низкотемпературные — в них теплоноситель прогревается до 50 градусов. Их используют при подогреве емкостей с водой для полива, устройстве летних ванн и душевых, создании комфорта прохладной весной или осенью и других задачах, не требующих высоких температур;
  • среднетемпературные, разогревающиеся до 80 градусов. С этой отметки гелиоколлектор можно использовать для отопления помещений (в том числе зимой), и подобные варианты распространены в проектах частных домов;
  • высокотемпературные, где носитель нагревается вплоть до 300 градусов. Такие системы применяют в коммерческих зданиях, цехах и других подобных местах. Высокотемпературные комплексы нуждаются в сложном механизме аккумулирования и передачи тепла и занимают много места, из-за чего мало пригодны для частно-бытовых задач. Кроме того, они трудоемки в изготовлении и монтаже, требуют особого инструмента и соответствующих навыков.

Сфера применения

Вакуумные солнечные коллекторы используются везде, где необходимо обеспечить тепло и горячую воду в условиях ограниченности топлива, невозможности подвода традиционных коммуникаций или нестабильности их работы. Их устанавливают на различных объектах:

  • сельскохозяйственных производствах;
  • предприятиях;
  • медицинских учреждениях;
  • санаториях и других оздоровительных комплексах;
  • детсадах, школах, летних лагерях;
  • местах отдыха туристов и гостиницах;
  • частных и многоквартирных домах;
  • офисных зданиях;
  • железнодорожном транспорте и тому подобное.

Такое устройство как вакуумный солнечный коллектор будет работать везде, где есть дневной свет и подвод холодной воды на объект. С его помощью решаются задачи:

  • организации сезонного и круглогодичного снабжения объектов горячей водой;
  • модернизации и оптимизации имеющейся водопроводной инфраструктуры;
  • дежурного и полного отопления помещений;
  • подогрев бассейнов;
  • обогрев в нуждах сельского хозяйства (питомники, инкубаторы и так далее);
  • подготовки технической подогретой воды и прочее.

Схема 2

Как устроен солнечный коллектор

Существуют различные варианты реализации преобразующих энергию Солнца вакуумных приборов. Основные виды коллекторов:

  • без применения защищающего стекла — это трубчатый;
  • аппарат с сокращенной конверсией;
  • плоский;
  • с прозрачной тепловой изоляцией;
  • воздушный прибор;
  • плоский вакуумный.

Все эти аппараты конструктивно похожи и несут следующие базовых компоненты:

  • прозрачная вакуумная трубка;
  • смонтированный в ней подогреваемый патрубок, где циркулирует рабочий теплоноситель;
  • сборные распределители, соединяемые с трубами большего диаметра. В них находится циркуляционный контур внутренних трубок.

Упрощенно конструкцию можно представить как обычный термос с прозрачными стенками, через которые свет падает на внутреннюю колбу. Благодаря вакууму между стенками и колбой последняя хорошо прогревается и почти целиком передает тепло своему содержимому.

Схема 3

Правильной работой комплекса может управлять циркуляционный насос. Этот элемент обеспечит безопасное и слаженное взаимодействие всех частей гелиоколлектора. Автоматизированная система управления нагревательным комплексом следит за температурой и, если она падает ниже разрешенного уровня (например, ночью), насос останавливается. Благодаря этому удается избежать ситуации обратного прогрева и других связанных проблем.

Классификация по конструктивным отличиям

Вакуумные коллекторы разделяют по типужу стеклянных трубок и параметрам теплоканалов. Трубки обычно встречаются двух категорий:

  • перьевые;
  • коаксиальные.

А каналы бывают прямоточные U-образные и разновидности heat pipe (смотреть ниже).

Коаксиальные вакуумные трубки

Это классический «термос» — колба, в которой вакуум создается между двойными стеклянными стенками. Кроме того, внутренняя поверхность колбы покрыта особым теплопоглощающим слоем. Их делают из боросиликатного высокопрочного стекла с хорошим светопропусканием. Такие вакуумные трубки для солнечного коллектора должны служить не менее 15 лет, справляться с давлением 1 МПа и не бояться плохих погодных условий.

Коаксиальные вакуумные трубки

Поглотителем служит полый стержень из меди с эфирным наполнением. Нагреваясь, эфир испаряется, поднимается, передает набранное тепло и выпадает вниз конденсатом. Далее процесс повторяется, обеспечивая непрерывный теплообмен внутри модуля.

Перьевые

Их стенки толще коаксиальных и состоят из единственной колбы. Медный абсорбционный элемент обрамлен гофрированной пластиной с теплопоглощающим слоем. Это позволяет вакууму находится прямо в канале модуля.

Перьевые

КПД такой трубки выше, но перьевая система дороже, а заменить ее в случае поломки медного абсорбера или нарушения герметичности колбы сложнее. Но именно этот вариант считается самым надежным, эффективным и долговечным среди похожих устройств.

Технология Heat pipe

Выполненные по этой технологии модули несут в себе трубки с испаряющимся жидким теплоносителем. При нагреве паром он поднимается наверх и собирается в манифольде (manifold) — теплосборнике. Здесь носитель отдает тепло, осаждается, и цикл повторяется. Из манифольда носитель передает энергию по всей системе, обеспечивая нагрев в контурах отопления и горячего водоснабжения.

Читайте также:
Стеклянные скинали: главные плюсы и минусы

Рабочий элемент такого канала делается медным, реже — из алюминия. Срок службы должен составлять 15 лет. Стоимость решения на базе «хит-пайп» относительно невелика и делает его самым популярным вариантом для создания современных трубчатых гелиосистем. Если какой-то узел испортится, его легко заменить без разборки всего комплекса. Ремонт можно проводить на месте с минимумом инструментов.

Технология Heat pipe

Прямоточные U-образные обменники

Как видно из названия, трубка такого теплообменника похожа на букву U. В ней циркулирует или рабочее тело теплоносителя, или вода системы. При этом одна часть компонента работает с нагретой средой, другая — с холодным носителем.

Нагревшись, состав расширяется и попадает в накопитель; таким способом обеспечивается простая циркуляция жидкости. На внутренние стенки накопительного бака нанесено эффективно забирающее тепло покрытие.

Прямоточные U-образные обменники

Эти трубки весьма эффективны, но обладают недостатком: конструктивно они едины с манифольдом и ставятся только вместе с таковым. Замена одной испортившейся трубки невозможна, для этого придется снимать всю систему.

Преимущества и недостатки вакуумных коллекторов

Основное достоинство данного класса устройств — минимальные эксплуатационные теплопотери благодаря вакууму, идеальному природному изолятору. Среди прочих плюсов:

  • эффективная работа обогревателей при температурах до −30 градусов и ниже, что делает их пригодными для зимней эксплуатации;
  • сбор тепла с нагревом до 300 градусов включительно (у больших промышленных образцов);
  • надежность и долговечность;
  • поглощение как световой энергии, так и невидимого теплового излучения;
  • стойкость к неблагоприятным погодным факторам;
  • небольшая парусность и способность почти свободно пропускать воздушные массы (благодаря чему системы почти не боятся ветра);
  • даже в местностях с малым числом ясных дней и холодным климатом способны показать высокую эффективность работы;
  • ремонтопригодность распространенных heat pipe решений на высоком уровне;
  • гелиобатарея остается работоспособной даже без контроллера (или при его отключении).

Вакуумный солнечный коллектор

Установка одного или нескольких таких устройств дает возможность существенно сэкономить на отоплении и горячем водоснабжении любых нуждающихся в этом объектов и построек. В среднем, затраты на нагрев воды снижаются на 60 %, а расходы на отопление — на 30 %. Достигается также оптимизация и снижение трат на эксплуатацию и поддержку коммуникаций. Вакуумный солнечный коллектор выступает как автономный источник тепла и обеспечивает потребителей горячей водой даже при перебоях с газом или электропитанием.

Еще один плюс — продление срока службы имеющихся систем отопления. Нагрузка на них снижается, и бойлер, например, способен прослужить до двух раз дольше: гелиоколлектор снижает нагрузку на него до 97 % от обычной. То же касается газовых котлов. При этом вакуумные солнечные модули легко интегрируются в существующие коммуникации. Можно запланировать их установку и на этапе планирования возводимого объекта.

Схема 4

Немаловажный бонус — экологическая чистота. Рассматриваемый класс устройств не производит вредных выбросов, не загрязняет окружающую среду и использует фактически неисчерпаемый источник энергии — солнечный свет. При этом каждый поступающий в систему джоуль используется оптимальным образом.

Интересно: считается, что к 2020 году около 20 % мировой потребности в электроэнергии станут удовлетворяться за счет Солнца. Особенно актуально это для регионов с интенсивным солнечным излучением и большим количеством ясных дней. За год в среднем в эксплуатацию вводится около 3 млн гелиоэнергетических систем.

Отметим также обеззараживающие свойства: под нагревом гибнут многие вредоносные микроорганизмы, вакуум также затрудняет их размножение.

микроорганизмы

Но есть и минусы. К ним относят высокую стоимость при покупке комплектующих и инструмента для самостоятельной сборки, а также неспособность недорогих трубчатых комплексов самоочищаться от налипшего/намерзшего зимой снега, льда и прочих загрязнений. Хотя существуют и варианты с режимами антизамерзания, и образцы с иными дополнительными возможностями.

Самостоятельная сборка

В начале создания вакуумного коллектора необходимо собрать раму. Желательно ставить ее сразу там, где будет находиться будущий обогревательный комплекс. Размеры рамы зависят от запланированных характеристик будущей системы и собираемой модели. Как правило, подробные указания прописаны в прилагаемой к комплектующим инструкции.

Важно: на дне короба будущего коллектора обязательно должна быть теплоизоляция.

Пример проекта для сборки:

сборка

Собирая раму на крыше, в местах прилегания ее дополнительно укрепляют герметиком. Это необходимо для защиты от попадания воды через монтажные отверстия. Далее на место ставят бак накопителя и прикрепляют к раме.

Далее монтируется воздухоотвод, ТЭН и датчик температуры (если есть). Все узлы устанавливаются на смягчающие прокладки (должны быть в комплекте). После этого к системе необходимо подвести водные коммуникации здания — для этого обычно используют фитинги и трубы из полипропилена, такая арматура достаточно вынослива, долговечна и легко меняется при выходе из строя. Трубы должны выдерживать температуру до 95 градусов.

Трубы

Когда водопровод подключен, в накопительный бак заливают воду и несколько часов проверяют герметичность комплекса. При нахождении утечек их следует немедленно устранить. Финальный этап — монтаж нагревающих модулей. В вакуумную стеклянную колбу помещают медную трубку, снизу конструкция фиксируется чашкой и резиновым пыльником. В латунный конденсатор до упора задвигают наконечник медной трубки, затем фиксирующий механизм защелкивается на кронштейне.

Установка остальных трубок выполняется по тому же принципу.

После этого к системе подсоединяется монтажный блок (если предусмотрен). На него заводится электропитание от сети 220 В. Также подключаются вспомогательные модули — температурный датчик, отвод воздуха и ТЭН. На финальном этапе монтируется управляющий контроллер комплекса (также если предусмотрен). В него вносятся необходимые настройки, после чего новая система обогрева запускается в работу в обычном режиме.

Панели

Все основные детали можно собрать самостоятельно. Но при отсутствии опыта слесарно-монтажных работ лучше обратиться к заводским комплектующим, поскольку собранный «с нуля» комплекс может содержать существенные огрехи и не давать требуемой эффективности. На рынке Москвы готовый комплект подключаемого к холодному водопроводу нагревателя на 30 вакуумных трубок с баком объемом в 260 литров стоит около 90 тысяч рублей.

Где лучше размещать

Для эффективной и полноценной работы вакуумный солнечный коллектор должен быть правильно размещен и сориентирован по сторонам света. В северных широтах желательно ставить устройство на солнечной стороне земельного участка или в южной части крыши. Если сориентировать точно на юг возможности нет, следует выбрать максимально освещенную позицию в направлении запада или востока.

Важно: гелиоэнергетический комплекс не должен перекрываться деревьями, дымоходами, декоративными частями кровли, соседними домами и прочими строениями. Это способно существенно снизить эффективность. При правильном расположении обогреватель обеспечит отличную теплоотдачу на весь год вне зависимости от сезона.

Панель

Заключение

Солнечный коллектор — интересная и технологичная альтернатива как традиционным способам получения тепла, так и современным экологически чистым, наподобие фотоэлектрических панелей или ветряков. Все, что требуется такой системе — наличие холодной воды и света, все остальное она сделает сама или с помощью простого управляющего блока и насоса, которые не обязательны.

Читайте также:
Черно-белые шторы - 99 фото изумительного и стильного дизайна

Вакуумный уловитель солнечной энергии автономен, не производит вредных выбросов, прост в устройстве и надежен: если систему собрать из качественных компонентов и следить за ней, она прослужит до четверти века и дольше. Её отличают высокие показатели преобразования света и невидимого теплового излучения в полезное тепло и малый коэффициент потерь — используется до 95 % поступившей энергии. Такое сочетание эксплуатационных свойств делает данный класс устройств привлекательным для широких кругов потенциальных владельцев, от оборудующих дом/участок частных лиц до крупного бизнеса. А с учетом нестабильной ситуации с ценами на энергоносители и тарифами ЖКХ, можно рассчитывать, что популярность вакуумных коллекторов будет лишь расти.

Как работает и как устроен солнечный коллектор на вакуумных трубках

вакуумный коллектор

Солнечный вакуумный коллектор (преобразователь тепловой энергии солнца) обеспечивает сбор солнечного излучения в любую погоду, вне зависимости от внешней температуры. Коэффициент поглощения энергии таких коллекторов, при степени вакуума 10ֿ, составляет 98 %. Солнечные коллекторы обычно устанавливаются непосредственно на крыше зданий таким образом, чтобы наиболее эффективно использовать площадь крыши для сбора энергии. Коллекторы монтируются практически под любым углом, от 5 до 90 градусов. Минимальный угол наклона необходим для обеспечения циркуляции теплоносителя Срок службы вакуумных коллекторов — не менее 20 лет.

Резервуар-теплообменник представляет собой автоматизированную систему преобразования, поддержания и сохранения тепла, полученного от энергии солнца, а также и от других источников энергии (например, традиционный водонагреватель, работающий на электричестве, газе или дизтопливе), которые страхуют систему при недостаточном количестве солнечной энергии. Нагретая таким образом вода поступает из теплообменника внутреннего блока в радиаторы системы отопления, а вода из резервуара используется для горячего водоснабжения.

Schematic3 вакуумный коллектор,солнечный коллектор,солнечное тепло

Блок управления предназначен для контроля температуры в солнечном коллекторе и резервуаре-теплообменнике, а также для выбора, в зависимости от величины этих температур, оптимального режима работы системы в течение суток. При этом контроллер регулирует поток теплоносителя через теплообменник, определяет направление подачи тепла (на ГВС или на отопление). В ночное время автоматика системы обеспечивает минимально необходимое привлечение дополнительной энергии для поддержания заданной температуры внутри помещения. Система обладает малой инерционностью, быстрым выходом на рабочий режим и позволяет обеспечить:

  • Круглогодичное горячее водоснабжение;
  • Сезонное отопление с экономией традиционных источников тепловой энергии до 80% (в зависимости от географической широты и климатических условий).

Конструкция элементов

вакуумный коллектор

Конструкция коллекторов с вакуумными трубами состоит из параллельных рядов прозрачных трубчатых профилей. Используются трубы типа ”стекло-стекло”. Внутренняя труба покрыта специальным селективным слоем, который хорошо абсорбирует солнечную энергию и препятствует потерям тепла. Такие трубы функционируют и в пасмурную погоду, и при отрицательной температуре, они преобразуют прямые и рассеянные солнечные лучи в тепло. Инфракрасное излучение, которое проходит сквозь облака, также поглощается и преобразуется в тепло. Трубки обычно выполнены из боросиликатного стекла.

Конструкция вакуумных труб похожа на конструкцию термоса: одна трубка вставлена в другую с большим диаметром. Между ними вакуум, который представляет совершенную термоизоляцию. Для всесезонных систем в коллекторах применяются вакуумные трубы с встроенными термотрубками (тепловыми трубками). Термотрубка – это закрытая медная труба с небольшим содержанием легкокипящей жидкости. Под воздействием тепла жидкость испаряется и забирает тепло вакуумной трубки. Пары поднимаются в верхнюю часть – наконечник, где конденсируются и передают тепло теплоносителю основного контура водопотребления или незамерзающей жидкости отопительного контура. Конденсат стекает вниз, и все повторяется снова.

Приемник солнечного коллектора медный с полиуретановой изоляцией, закрыт нержавеющим листом. Передача тепла происходит через медную „гильзу“ приемника. Благодаря этому отопительный контур отделен от трубок, при повреждении одной трубки коллектор продолжает работать. Процедура замены трубок очень проста, при этом нет необходимости сливать незамерзающую смесь из контура теплообменника.

Резервуар-теплообменник

Конструктивно выполнен в виде бойлера-накопителя. Предназначен для накопления и сохранения тепла, и обычно включает в себя одну или две внутренние теплообменные спирали. Остальное оборудование системы обычно включает насос, манометр, клапан давления, вентили, кран регулировки налива воды, соединители, манометр, вентиль безопасности на 6 атм., набор для безопасного подсоединения к отопительной системе. Как опция бак может оснащаться электронагревателем мощностью от 1 до 3 кВт.

При одновременной потребности в горячей воде и отоплении, солнечная энергия распределяется между нагревом главного котла и горячим водоснабжением. При достижении заданной температуры, автоматика переключает подачу тепла на отопительный контур. Такая последовательность работы системы может быть изменена на прямо противоположную, в зависимости от климатической зоны или времени года. Система сконструирована таким образом, что к ней легко могут подсоединяться другие нагревательные системы.

Системный контроллер для солнечных водонагревательных систем

Контроллер предназначен для контроля температуры в солнечном коллекторе, в резервуаре-теплообменнике и выбора, в зависимости от величины этих температур, оптимального режима работы системы в течение суток.

Контроллер выполняет следующие основные функции:

  • Индикацию температуры коллектора;
  • Индикацию температуры в резервуаре;
  • Индикацию температуры обратного потока теплоносителя;
  • Установка температуры включения принудительной циркуляции теплоносителя;
  • Установка времени включения и выключения системы отопления;
  • Установка температуры и времени дополнительного подогрева;
  • Установка температуры «антизамерзания»;
  • Индикацию повреждения датчиков.
Читайте также:
Электрокаменки, дровяные и газовые печи для сауны

Типы гелиосистем

Различают два типа гелиосистем: сезонные и круглогодичные (всесезонные)

К сезонным системам относятся вакуумные коллекторы с прямой теплопередачей солнечной энергии воде. В таких системах вакуумные трубки расположены под определенным углом и соединены с накопительным баком. Из него вода протекает прямо в трубки, нагревается и возвращается обратно.

К преимуществам этой системы относится непосредственная передача тепла воде без участия других элементов. Минусом можно считать несколько больший объем воды контура теплообменника (60-200 литров). Основным преимуществом остается низкая стоимость и высокий КПД, до 98 %.

К всесезонным системам относятся вакуумные коллекторы с термотрубками. Принцип действия таких коллекторов прост и припоминает работу установки центрального отопления. Это закрытая система, в которой, через верхнюю часть коллектора и змеевик протекает, незамерзающая жидкость. Эта жидкость забирает тепло из медных наконечников, а затем горячая жидкость перекачивается через змеевик бака-аккумулятора и нагревает воду в баке. Цикл передачи тепла из коллектора к аккумулятору длится до тех пор, пока длится день (и температура на выходе коллектора выше температуры в баке на уровне теплообменника). Работу насоса контролирует электронный контроллер. Датчики контроллера находятся в коллекторе и в баке-аккумуляторе. Они измеряют температуру в системе. Кроме того, расширительный бак предохраняет систему от слишком высокого давления, возникающего при возрастании температуры и не использовании воды потребителями.

Область применения

  • Обеспечение горячим водоснабжением жилых домов, коттеджей, дачных домиков, гостиниц, ресторанов, теплиц, бассейнов и т.д.;
  • Отопление помещений в весенне-осенний период и экономия энергоносителей системы отопления в зимний период до 50%.
  • Поддерживающее отопление помещений при применении с технологией «теплый пол»

Эта статья прочитана 27065 раз(а)!

Продолжить чтение

Вакуумные солнечные коллекторы

Солнечное тепло: горячее водоснабжение и отопление с вакуумными солнечными коллекторами В вакуумном водонагревателе-коллекторе объем, в котором находится темная поверхность, поглощающая солнечное излучение, отделен от окружающей среды вакуумированным пространством, что позволяет практически полностью устранять потери теплоты в окружающую среду за счет…

Солнечные коллекторы: 2 параметра площади

Солнечные коллекторы: общая и апертурная площади Каждый проект солнечного отопления неизбежно начинается с оценки размера коллектора. Например, обычно используемое «эмпирическое правило» для условий отопления юга России: 10 процентов площади обогреваемого пола плюс 1 квадратный метр на каждые 100 литров в…

Интересные ссылки по солнечным коллекторам Солнечные коллекторы: правда и мифы. Приведено сравнение плоских и вакуумных коллекторов. Написано все, на удивление, правильно, видно что писал не журналист, а практик. Видео о солнечных коллекторах https://youtu.be/Bm-hgBhgwL0 Процесс кипячения воды в вакуумной трубке Испытания…

Дом с отоплением от солнечного коллектора

Эскизный проект загородного сельского дома с отоплением от солнечного коллектора Вырезка из журнала «Наука и Жизнь», кажется №12 за 1985 год. Арх. А.Семенов. СОЛНЕЧНЫЙ ДОМ Возможность использования солнечной энергии для экономии топлива при обогреве характеризуют следующие цифры. Среднее за год…

Душевая кабина с устройством для подогрева воды

ГОРЯЧАЯ? В ЛЮБОЕ ВРЕМЯ! Многие жители села и садоводы имеют на своих участках душ. Как правило, это небольшая отдельно стоящая закрытая постройка с баком на крыше. Из него самотеком по трубе к душевой сетке поступает холодная вода. Конечно, в жаркий…

Солнечное теплоснабжение

Солнечное тепло: горячее водоснабжение и отопление В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м2, достигая пиковых значений в полдень при ясном небе, практически в…

Вакуумный солнечный коллектор

Солнечный коллектор – техническое устройство для поглощения тепловой энергии солнца в видимом и инфракрасном диапазонах с дальнейшей передачей полученной энергии теплоносителю. Используется в системах отопления и горячего водоснабжения зданий. По конструкции бывают: плоские и вакуумные.

Принцип работы вакуумного коллектора

Основной составляющей конструкции вакуумных солнечных коллекторов является стеклянная трубка, которая крепится в каркасе (панели) коллектора. В одной панели устанавливается несколько подобных трубок, в зависимости от конструкции количество их может различаться.

Трубка состоит из нескольких составных частей, это:

  • Стеклянная трубка с поглощающим солнечные лучи слоем;
  • Медная трубка меньшего диаметра, помещенная в стеклянную трубку.

вакуумный коллектор14

Между трубками – вакуумное пространство.

Принцип работы подобных устройств следующий

  1. Солнечные лучи попадают на стеклянные трубки, обработанные специальным слоем и их энергия поглощается этим элементом конструкции.
  2. В трубках меньшего диаметра помещена специальная жидкость, которая под воздействием энергии поглощенной абсорбером (стеклянные трубки с поглощающим слоем) нагревается и при достижении определенных параметров – испаряется. В парообразном состоянии вещество поднимается вверх трубок.
  3. Комплекты трубок помещены в общий блок, в котором контактируют с циркулирующим теплоносителем.
  4. В парообразном состоянии энергия передается теплоносителю, после чего вещество конденсируется и в жидком состоянии стекает вниз.
  5. Процесс повторяется снова.

Популярные марки вакуумных коллекторов

Сегодня, на рынке альтернативных источников энергии вакуумные коллекторы представлены отечественными и зарубежными производителями.

В России их производят в таких компаниях, как: «АльтЭнергия» (г. Анапа), ВПК «НПО Машиностроения» (г. Реутов), ПК «АНДИ Групп» (г. Москва).

В мире наиболее широко представлена продукция компании: «GREENoneTEC» (Австрия), «Soletrol» (Бразилия), «Guangdong Fivestar Solar Energy Co., Ltd» (Китай).

ВПК «НПО Машиностроения» выпускает солнечный коллектор «Сокол-Эффект»вакуумный коллектор1

Технические характеристики устройства:

  • Материал поглощающей панели – медь/алюминий;
  • Габаритные размеры – 2008х1093х76,7 мм;
  • Поглощающая площадь – 2,06 м2;
  • Мощность – 1,5 кВт;
  • Масса – 36,5/32 кг;
  • Рабочее давление – до 0,6 МПа;
  • КПД – 82%;
  • Теплоизоляция – минеральное волокно.

«АльтЭнергия» выпускает солнечные коллекторы серии R1 «SunRain»

Технические характеристики устройства:

  • Материал поглощающей панели – трехслойное селективное покрытие;
  • Габаритные размеры – 2420х2010х145 мм;
  • Поглощающая площадь – 2,41 м2;
  • Масса – 106,0 кг;
  • КПД – 95%.

ПК «АНДИ Групп» выпускает солнечные коллекторывакуумный коллектор3

Серии «ДАЧА» и «ДАЧА ЛЮКС».
Технические характеристики:

  • Габаритные размеры – от 2350х950х1600 до 2350х2050х1600 мм (в зависимости от модели);
  • Поглощающая площадь – от 1,32 до 3,17 м2 (в зависимости от модели);
  • Масса – от 58,0 до 108,0 кг (в зависимости от модели);
  • Количество вакуумных трубок – от 10 до 24 шт. (в зависимости от модели).

Серия «УНИВЕРСАЛ».
Технические характеристики:

  • Габаритные размеры – от 2350х1350х1600 до 2350х3200х1600 мм (в зависимости от модели);
  • Поглощающая площадь – от 1,97 до 4,76 м2 (в зависимости от модели);
  • Мощность – 1,5 – 2,0 кВт;
  • Масса – от 64,0 до 152,0 кг (в зависимости от модели);
  • Количество вакуумных трубок – от 15 до 36 шт. (в зависимости от модели).
Читайте также:
Фасадная краска по бетону для наружных работ: характеристики и расход на 1м2

вакуумный коллектор11

  • Габаритные размеры – от 2000х950х1420 до 2000х2300х1420 мм (в зависимости от модели);
  • Поглощающая площадь – от 1,58 до 3,96 м2 (в зависимости от модели);
  • Масса – от 37,0 до 93,0 кг (в зависимости от модели);
  • Количество вакуумных трубок – от 12 до 30 шт. (в зависимости от модели).

Компания «GREENoneTEC» (Австрия)

Выпускает вакуумные солнечные коллекторы 2-х типов, это: FK 8200N 4H VS7E и FK 8200N 4H VS7E, которые отличаются по материалу абсорбера и мощности.
Технические характеристики устройств:

  • Материал поглощающей панели – Cu-Al сплав Blue TiNox/Cu-Al сплав Black Ch;
  • Габаритные размеры – 1730х1170х83 мм;
  • Поглощающая площадь – 1,91 м2;
  • Мощность – 1,91/1,81 кВт;
  • Масса – 35,0 кг;
  • Количество вакуумных трубок – 10 шт.

Вакуумные коллекторы компания «Soletrol» (Бразилия)

Представлены единичными экземплярами, техническаяинформация по ним отсутствует.

Компания «Guangdong Fivestar Solar Energy Co., Ltd» (Китай)

вакуумный коллектор10

Выпускает вакуумные коллекторы серии AL-HP.
Технические характеристики:

  • Габаритные размеры – от 2020х1240х180 до 2020х2440х180 мм (в зависимости от модели);
  • Масса – от 51,0 до 97,0 кг (в зависимости от модели).

Пригоден ли вакуумный коллектор для отопления дома

Альтернативные источники энергии получают все большее распространение в повседневной жизни.

Солнечные вакуумные коллекторы не исключение, их используют для подогрева воды в бассейнах, горячего водоснабжения и отопления помещений, как в комплексе с другими источниками, так и в качестве самостоятельных систем.

вакуумный коллектор15

При устройстве системы отопления при помощи вакуумного коллектора, помимо самого агрегата, который служит приемником солнечной энергии, потребуются следующие приборы и устройства:

1 — Солнечные лучи;

2 — Вакуумные трубки коллектора;

3 — Теплообменник коллектора;

4 — Расширительный бак;

5 — Приборы контроля;

6 — Приборы учета;

7 и 8 — Приборы контроля теплоносителя;

9 — Аварийный клапан бака накопителя;

10 — Подача теплоносителя;

11 — Выход теплоносителя;

12 — Бак накопитель;

13 — Приборы управления теплоносителем;

14 — Регулирующая аппаратура системы отопления, горячего водоснабжения и подогрева воды;

15, 16, 17 — Потребители тепловой энергии (система отопления, ГВС и подогрева воды в бассейне).

Как сделать своими руками

Изготовить вакуумный коллектор своими руками возможно, но только в том случае, если воспользоваться вакуумными трубками и блоком концентратором заводского производства. Обусловлено это тем, что в кустарных условиях невозможно создать вакуум внутри основного элемента – трубок, а при попадании воздуха снизится теплопроводность устройства и как следствие КПД создаваемого агрегата.

вакуумный коллектор13

Для изготовления коллектора понадобятся:

  1. Вакуумные трубки – количество определяет конструирующий мастер. Используются трубки промышленного производства;
  2. Блок концентратор – в зависимости от количества трубок выбирается тот либо иной размер устройства. Используется агрегат промышленного производства.
  3. Материалы для изготовления рамы.

вакуумный коллектор8

Изготавливается рама коллектора, для этого можно использовать пиломатериалы или профильные элементы из металла. На раме крепится концентратор и вакуумные трубки в следующей последовательности:

  • На медный стержень надеваются теплопроводные пластины и заглушки;
  • Устанавливается стержень в вакуумную колбу;
  • Одеваются фиксирующие чашки;
  • Одевается защитный пыльник;
  • Стержень помещается в блок-концентратор;
  • Процесс повторяется со следующей трубкой.

После сборки солнечный коллектор монтируется на подготовленной плоскости, при этом необходимо учесть следующие условия, как то:

вакуумный коллектор7

  • При монтаже коллектор следует ориентировать на юг;
  • Создать условия для недопущения затенения коллектора;
  • Создать защиту от перегрева;
  • Надежно закрепить коллектор на подготовленной поверхности.

Средние цены

Как уже писалось выше, вакуумные солнечные коллекторы производят в нашей стране и многих странах мира. Для того чтобы понять порядок цифр, из которых складывается ситуация на рынке этих аппаратов, изучим сколько стоят вакуумные коллекторы, которые рассматривались выше, это:

  • Стоимость солнечного коллектора «Сокол-Эффект» выпускаемого ВПК «НПО Машиностроения», по состоянию на 01.03.2017 года составляет — 21900,00 рублей.
  • Стоимость коллекторов компании «АльтЭнергия» составляет для:
  1. Серии R1 «SunRain» от 24000,00 до 60000,00 рублей в зависимости от конструкции.
  2. Серии U от 18000,00 до 35000,00 рублей в зависимости от конструкции.
  • Стоимость вакуумных коллекторов компании ПК «АНДИ Групп» составляет:
  1. Серия «УНИВЕРСАЛ», от – 47700,00 до 89700,00 рублей в зависимости от модели;
  2. Серия «ДАЧА» от 17500,00 до 36000,00 рублей в зависимости от модели;
  3. Серия «ДАЧА ЛЮКС» от 24500,00 до 37500,00 рублей в зависимости от модели;
  4. Серия SCH от 25400,00 до 61700,00 рублей в зависимости от модели.
  • Стоимость коллекторов компании «GREENoneTEC» составляет:
  1. Модель FK 8200N 4H VS7E – 454 евро;
  2. FK 8200N 4H VS7E – 420 евро.
  • Стоимость коллекторов компании «Guangdong Fivestar Solar Energy Co., Ltd» составляет:
  1. Серия AL-HP — от 440 до 880 долларов.

Плюсы и минусы вакуумных коллекторов

вакуумный коллектор16

К положительным аспектам использования можно отнести следующие:

  • Возможность создания полностью автономной системы теплоснабжения.
  • Неисчерпаемый, возобновляемый источник энергии, каким является солнце.
  • Надежность устройств.
  • Ремонтопригодность устройств.
  • Экологическая безопасность устройств.

К недостаткам вакуумных коллекторов относятся:

  • Высокая стоимость устройств.
  • Влияние погодных условий на производительность аппаратов.
  • Невозможность повсеместного использования, определяющаяся регионом проживания потенциальных потребителей.

Вероятно, Вам также понравятся следующие материалы:

Спасибо, что дочитали до конца! Не забывайте подписываться на канал , Eсли статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Вакуумный солнечный коллектор. Принцип работы и оценка эффективности.

Вакуумный солнечный коллектор — оборудование, предназначенное для нагрева воды с помощью солнечной энергии.

Основным нагревательным элементом солнечного коллектора является вакуумная трубка с селективным покрытием. В простых термосифонных коллекторах процесс нагрева воды происходит непосредственно в самой трубке. За счет явления конвекции, нагретая вода перемещается вверх, холодная вниз.

Нулевая теплопроводность вакуума между внутренней и внешней трубкой обеспечивает сохранность тепла. Эффективность такой системы в теплое время года наиболее высокая. Так за один солнечный августовский день термосифонный водонагреватель нагревает 200 литров воды до 84°С.

Читайте также:
Сравнительный анализ керамзитобетонных блоков и газосиликатных

Безупречная эффективность термосифонного водонагревателя в теплое время года оборачивается проблемой в холода: несмотря на 50мм теплоизоляцию бака-накопителя теплопотери в холодную ночь могут достигать 20-25°С.

Если же морозы продержатся несколько дней, а солнце не сумеет пробиться через плотный слой облаков, вода в трубках превратится в лед, а это может привести к разрыву внутренней трубки и выходу из строя всего коллектора.

Кроме того, замена даже одной трубки, требует слива всей воды в баке, что очень трудозатратно.

Для решения проблемы «сезонности», широко применяется в нашем климате вакуумная трубка Heat Pipe или так называемая «сухая трубка».

В стеклянную трубку вставлена медная трубка в алюминиевом рефлекторе, который выполняет роль мостика тепла. Процесс конвекции протекает уже внутри медной трубки HP.

Температура на конце трубки может достигать 250-280ºС. Существует два основных способа передачи этого тепла к потребителю:

1. Греем воду непосредственно в баке (система под давлением). Эта система проста и компактна, но за счет того, что бак расположен на улице, в зимнее время эффективность такой системы тоже имеет ряд ограничений.

2. Передаем тепло теплоносителю и греем воду в баке косвенного нагрева, расположенному в помещении. Поговорим более подробно о солнечном вакуумном коллекторе:

Такая система универсальна. Она может быть интегрирована в систему отопления и существенно сократить расходы на топливо.

Но не стоит рассматривать солнечный коллектор как единственный источник тепла в Вашем доме. Законы физики неумолимы! Когда светит солнце — коллектор работает. Когда солнца нет — не работает!

Рассчитать эффективность солнечного вакуумного коллектора для горячего водоснабжения в первом приближении поможет следующая методика:

  • Шаг 1. Определить, на сколько градусов должна повыситься температура воды и ее объем. Семья – 4 человека (2 взрослых и 2 ребенка). В среднем на одного человека расходуется в день 50 литров воды. Соответственно 50*4=200 л. Средняя температура водопроводной воды = 15°С. Она должна быть нагрета до 50°С. 50-15=35°С.
  • Шаг 2. Определить количество энергии необходимой для нагревания этого объема воды. Для нагрева одного литра воды на один градус надо затратить энергию равную 1 ккал. 200 л x 35°C = 7000 ккал. Для перевода данной энергии в кВт*ч воспользуемся следующей формулой 7000 / 859,8 = 8,14 кВт*ч (1 кВт*ч = 859,8 ккал)
  • Шаг 3. Определить количество энергии, которая может быть преобразована в тепло солнечным коллектором. Рассмотрим вариант расположения солнечной установки в Краснодаре. Значение солнечной радиации на поверхность, наклоненную к горизонту на 45° с ориентацией на юг, по данным за последние 22 года наблюдений: в июле на 1 м² составляет 5,44 кВт*ч/день, а в декабре 1,74 кВт*ч/день. Эффективность вакуумного солнечного коллектора традиционно принимают за 80%. Это не совсем верно, так как на КПД влияют многие факторы, мы поговорим о них ниже. Но для предварительного расчета примем эту цифру. Значение передачи поглощенной энергии вакуумными трубками равно 5,44 x 0,8 = 4,35 кВт*ч/день площади поглощения коллектора для июля. Значение передачи поглощенной энергии вакуумными трубками равно 1,74 x 0,8 = 1,39 кВт*ч/день площади поглощения коллектора для декабря. Площадь абсорбции вакуумной трубки диаметром 58 и длиной 1800 мм составляет 0,0937 м². Несложно подсчитать, что одна трубка способна получать и передавать солнечное тепло в размере 0,4075 кВт*ч и 0,13 кВт*ч соответственно в июле и декабре.
  • Шаг 4. Определить необходимое число трубок. Используя значение, вычисленное выше, определяем количество трубок, которое надо установить. Энергия, которую необходимо затратить на нагрев нужного количества воды, составляет 8,14 кВт*ч. Энергия, которую может передать одна вакуумная трубка, в зависимости от месяца составляет 0,4075 кВт*ч и 0,130 кВт*ч.

Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / 0,130= 63 трубки.

Оптимальным выбором будет два 20-ти трубочных коллектора и бак на 220 литров с одним теплообменником.

Для наглядности приведем таблицу эффективности коллекторного поля из 40 трубок ориентированного на юг.

Угол наклона трубок к горизонту 45º, выраженную в кВт*ч в день тепловой энергии, опираясь на данные Национального Управления по Воздухоплаванию и Исследованию Космического Пространства (NASA), получаем следующий график:

Чтобы эти цифры обрели прикладное значение, давайте попробуем рассчитать, на какую температуру в баке накопителе мы можем рассчитывать?

Возьмем для примера рекомендованный из расчета бак на 220 литров.

Температура воды в баке на начало дня равна температуре в бойлерной, где он располагается и равна, предположим, 20ºС.

Сначала переводим кВт*ч в килокалории:

Теперь, определим, на сколько градусов нагреет воду в баке наш коллектор за один СРЕДНИЙ декабрьский день:

  • Pккал (мощность коллектора в ккал)
  • Vбака (Объем воды в баке): 220л
  • Δt искомая величина (значение температуры, на которое нагреется вода в баке за день).

Δt = Pккал/Vбака

Несмотря на хорошую теплоизоляцию теплопровода, мы потеряем часть тепла по пути до бака. Сам бак тоже обладает не 100% теплоизоляцией.

Так же процесс теплообмена между концом трубки Heat Pipe и теплоносителем и теплообмен в змеевике бойлера снижает общую эффективность системы. Так что можно смело списывать еще 10% для зимы, 5% для ноября и марта, 2% для апреля с октябрем. Летом можно принять этот вид потерь за ноль.

Δt= Pккал/Vбака*0,9

Δt дек=4486/220*0,9=18ºС

Казалось бы все ясно и понятно. НО! Мы опираемся на данные среднемесячных наблюдений. А это значит, что В СРЕДНЕМ по декабрю мы получим такую величину Δt. Давайте попытаемся понять, что значит это самое СРЕДНЕЕ: По данным портала: russia.pogoda360.ru солнечных дней в Краснодаре в декабре 31%, облачных 34%, пасмурных: 34%

В пасмурную погоду эффективность солнечного коллектора близка к нулю. Нет солнца — нет тепла.

Конечно какую-то энергию рассеянного солнечного излучения вакуумные трубки соберут, но при передаче ее воде бака естественные потери в теплотрассе и самом баке ее обнулят. Да и циркуляционный насос качающий теплоноситель не включится, если разность температур в коллекторе и баке не превысит хотя бы 10ºС.

Читайте также:
Фасадная краска по бетону для наружных работ: характеристики и расход на 1м2

Таким образом все те крохи тепла, что соберет коллектор просто развеятся. В такие дни поддержкой температуры в баке занимается электрический ТЭН, который предусмотрен во всех буферных емкостях. Если ТЭНа нет или он отключен, теплопотери бака ничем не компенсируются. Температура воды в баке сравняется с температурой воздуха в бойлерной.

Скорость с которой остынет вода, зависит от теплоизоляции бака и температуры внутри помещения. По эмпирическим данным потеря тепла составляет порядка 5-8ºС за 12 часов (ночь) при разнице температур в баке и помещении около 25ºС .
Если за сутки плотные тучи так и не рассеялись, наш бак остынет на 10-16 градусов. А за два дня потеряет все накопленное тепло.

В облачную погоду мы уже можем на что-то рассчитывать. Но опять же. Насколько она «облачна»? Сколько конкретно кВт*ч солнечного излучения приходит на нашу солнечную установку? В лучшем случае нам удастся компенсировать естественное остывание бака.

Рассчитать точное значение мощности солнечного коллектора в каждый день можно, но для этого нужно иметь данные инсоляции по каждому дню. Знать истинные цифры теплопотерь на конкретном объекте. Температуру воздуха и пр. Это имеет скорее научное, чем прикладное значение. Нам же надо понять принцип работы и возможности, которые предоставляет нам использование этого оборудования.

Итак, мы имеем среднее значение Δt=18ºС. Это значит, что в СРЕДНЕМ в декабре мы получим 38ºС в баке за один день. За ночь наш бак остынет, и если нам повезет и день снова будет СРЕДНИМ ( :-) ), к вечеру мы можем рассчитывать на 38-5+15=51ºС. Не учитывая потерь бака, о которых мы говорили выше. Но достаточно двух подряд пасмурных дней, чтобы вода в баке остыла до температуры окружающей среды. При этом, за два солнечных дня мы увидим 60-70 градусов на термометре бака, если не будет водоразбора. Где же этому предел? И почему мы так редко наблюдаем кипящую воду в баке зимой? Все дело снова в потерях! Чем выше разница между температурой в баке и воздухом в бойлерной, тем интенсивней идет теплообмен.

Так все-таки работает ли солнечный коллектор зимой или нет!?

Ответ: ДА работает! Но мы не можем рассматривать коллектор как единственный источник тепла. Лишь, как помощь основному источнику.

В среднем использование солнечного коллектора может экономить:

  • В зимний период от 20 до 40% энергии на отопление и ГВС.
  • В период с апреля по октябрь наши потребности в отоплении значительно ниже, а солнца больше. Здесь мы говорим о 60-70% на отопление и до 90% на ГВС.
  • С мая по сентябрь солнца много, потребности в отоплении нет совсем и мы закрываем 100%+ потребности в ГВС!

Вернемся снова к нашему расчету. Копнув чуть глубже мы выяснили, что не все так прямолинейно. И если расчет для ИЮЛЯ остается практически неизменным, то для февраля мы должны учесть потери как минимум 10%. Тогда наша формула будет выглядеть так:
Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / (0,130*0,9)= 70 трубок.
Поэтому, нашей рекомендацией будет установка коллектора на 20 и 30 трубок, соединенных в группу на 50 трубок. И установка электроТЭНа на 2 кВт в бак накопитель.

Куда же девать излишки тепла летом? Решение зависит от конкретного объекта. Если есть бассейн — греем бассейн. Если нет — ставим тепловентилятор, который работает по принципу печки в автомобиле. Сбросом тепла управляет контроллер гелеосистемы. Все автоматизировано и не требует участия человека.

ИБП для гелиоустановки: Контроллер управления, циркуляционные насосы гелеосистемы и тепловентилятора работают от сети 220в 50Гц. В случае отключения электропитания в солнечный летний день, и остановки циркуляции теплоносителя ,температура в коллекторе достигнет предельных значений за считанные секунды.

Это может привести к аварии и дорогому ремонту оборудования. Поэтому, верным решением будет обеспечить их работу источником бесперебойного питания, состоящего из небольшого инвертора с зарядным устройством и аккумуляторной гелевой батареи.

Специалисты нашей компании имеют богатый практический опыт в проектировании и установке солнечного оборудования. А прямые поставки с заводов изготовителей, гарантируют лучшие цены на рынке.

Мы предлагаем нашим клиентам не просто оборудование, а комплексное решение задач отопления и горячего водоснабжения.

Устройство и принцип работы вакуумного солнечного колектора

Экология потребления.Наука и техника:Вакуумный солнечный коллектор – эффективное устройство, способное питать не только электрическую лампочку, но и целую отопительную систему для помещений.

Ежедневно солнце является поставщиком неограниченного энергетического потенциала, которое будет доступно для человеческого пользования на протяжении еще многих лет. Такие возможности природы являются главными движителями для человека придумывать и воплощать в реальность более новые возможности и устройства, которые способны перерабатывать солнечное излучении в полезную для человечества энергию.

Устройство и принцип работы вакуумного солнечного колектора

Монтаж вакуумных трубок

Вакуумный солнечный коллектор – эффективное устройство, способное питать не только электрическую лампочку, но и целую отопительную систему для помещений.

Переработанная солнечная энергия превращается в тепловую, и передается теплоносителю.Такое применение современных установок используется для обогрева помещения, подогрева жидкости, архитектурных конструкций.

ПРОЦЕСС НАГРЕВАНИЯ ВОДЫ ОТ СОЛНЦА

Для того, чтоб солнечное светило могло осуществить нагрев воды, должны быть осуществлены некоторые предпосылки. На протяжении всего года расход остается практически на одном и том же уровне. Именно по этой причине в роли энергетического источника для нагрева жидкости эффективнее всего использовать энергию большого светила – Солнца.

Если правильно осуществить установку солнечных коллекторов, то они способны увеличить температуру воды на 50- 65% в холодное время и до 100% в летнее.

Устройство и принцип работы вакуумного солнечного колектора

Установка коллектора на металлический каркас

Главным конструктивным отличием вакуумных коллекторов являются стеклянные трубки, которые надежно закреплены на базовой панели. Такие трубки покрыты специальным веществом, которое способно притягивать солнечное тепло. Помимо этого, внутри такой трубки находится еще одна, меньшим диаметром.

Читайте также:
Стеклянные скинали: главные плюсы и минусы

Следует отметить, что между ними находится вакуум. Именно благодаря этой вакуумной прослойке удается сохранить большую часть тепла и повысить эффективность коллектора более чем на 30%, по сравнению с плоскими моделями. В таких коллекторах вода способна нагреться до 300 °C.

Следующим не менее важным отличием вакуумных коллекторов является специальная жидкость внизу трубки, которая в результате нагревания превращается в пар, поднимаясь вверх, производит равномерное нагревание жидкости.

Отметим, что именно в регионах с небольшой продолжительностью светового дня и минусовой температурой реализация такой работы аппарата дает существенный выигрыш в количестве добытой тепловой энергии.

Относительно цены такие приборы имеют более высокую стоимость, нежели иные, однако, выходные характеристики оправдываются по истечении нескольких лет.

ПРИНЦИП РАБОТЫ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Если говорить доступным языком, то солнечные коллекторы направлены на оккупацию тепловой солнечной энергии, ее накапливание и последующее распределение по оборудованию для человеческих потребностей.

Для большего понимания работы системы, прежде всего, необходимо разобраться из чего она состоит. Зачастую такая система собрана из коллектора, контура для самого теплообменника, теплового аккумулятора, температурных датчиков, приемника. В качестве такого аккумулятора чаще всего используют водяной бак.

Теперь разберем особенности некоторых частей более подробно. Главной особенностью приемника является состав сплава – медь, изолированная полиуретановым типом, защищенная анодированным алюминиевым покрытием. Именно через него происходит подача тепловой энергии. В случае обнаружения неисправности в приемнике его процесс замены происходит без особых затруднений, без необходимости слива всей не замерзшей жидкости из теплообменника.

Устройство и принцип работы вакуумного солнечного колектора

Принцип работы вакуумной трубки коллектора

Температурные датчики расположены на выходе из вакуумного коллектора и на обратной стороне устройства отопления. На основе данных температурных датчиков происходит включение и выключение циркуляционного насоса.

В случае перегрева теплоносителя (жидкости) в системе может возникнуть так называемое избыточное давление, нейтрализовать которое поможет только расширительный бак.

Работа системы происходит следующим образом. В качестве теплоносителя вакуумного солнечного коллектора является незамерзшая жидкость, которая, продвигаясь через верхнюю зону устройства, осуществляет поглощение тепловой энергии со специальных наконечников из медных сплавов.

В результате использования змеевого механизма осуществляется нагревание жидкости в накопителе. Замкнутый цикл передачи тепла происходит до тех пор, пока температура самой жидкости будет превышать температурные показатели воды в накопительной емкости. Время работы такой системы напрямую зависит от продолжительности дня и температуры окружающей среды.

ВАКУУМНЫЕ НАКОПИТЕЛИ С ПРЯМОЙ ТЕПЛОВОЙ ПОДАЧЕЙ

Такие условия работы системы свидетельствуют о том, что в теплое время года можно будет отказаться от использования традиционных систем обогревания при помощи газа или электричества. Использование такой системы в летнее время является крайне выгодным еще и по той причине, что выработанной энергии хватает даже на питание некоторых бытовых электрических машин, работающих на благо домашнего хозяйства.

Важным достоинством современных солнечных водонагревательных установок является простота технологического новшества, использование которого дает возможность жить комфортно, экономно, без нанесения вреда для окружающей среды.

В приборах с прямой подачей тепла вакуумные приспособления, изготовленные из стекла, и накопительный бак крепятся к единому рамному каркасу в наклоне от 40° до 60 °. Через резиновое соединительное кольцо соединены все вакуумные механизмы с накопительным баком.

Устройство и принцип работы вакуумного солнечного колектора

Принцип работы вакуумного накопителя с прямым нагревом

При помощи запорного клапана устройство может быть подключено к водопроводным линиям, а специальный фиксирующий клапан осуществляет контроль за состоянием уровней водных масс в накопительной емкости.

Ввиду того, что носителем в таких системах является вода, то такие устройства относят к сезонным обменникам тепловой энергии.

ВАКУУМНЫЕ КОЛЛЕКТОРЫ С КОСВЕННОЙ ПОДАЧЕЙ

Принцип работы оборудования, который имеет свойства косвенной передачи тепловых ресурсов, чем-то схож с процессом системных линий централизованной системы отопления. Работа в данных соединениях происходит благодаря давлению от водопроводных путей.

ДОСТОИНСТВА ВАКУУМНЫХ КОЛЛЕКТОРОВ

Для осуществления работы системы используются вакуумные изолированные приспособления. Главным достоинством таких тепловых соединений является постоянная работоспособность и при пониженных температурах (до — 40 °C) и усиленном давлении водопроводных каналов. Сам прибор с накопительным баком устанавливаются по отдельности, которые соединяются при помощи специальных металлопрокатных изделий.

Для получения максимального количества солнечной энергии стандартный вакуумный коллектор устанавливают на крыше дома, а накопительную емкость внутри помещения. Такие установки получили название всесезонных сплит-систем.

Устройство и принцип работы вакуумного солнечного колектора

Принцип работы вакуумного накопителя косвенного нагрева

Работоспособность косвенных устройств автоматизирована при использовании контроллеров, а бесперебойная циркуляция носителя тепловой энергии в системе осуществляет насос.

Главными достоинствами коллекторов солнечного тепла являются:

  1. Высокая эффективность процесса даже в условиях минусовой температуры.
  2. Легкость установки всей конструкции.
  3. Противоветровая устойчивость коллектора.
  4. Продолжительность работы.

К недостаткам использования работы такой системы необходимо отнести высокую стоимость оборудования, окупаемого по истечении нескольких лет.

РАСПРОСТРАНЕННОСТЬ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

На сегодняшний день ситуация распространения солнечных коллекторов претерпела небольших изменений. Ввиду изменения климата в некоторых областях использование солнечных коллекторов приобрело больше популярности.

Солнечные коллекторы с успехом используют как для реализации бытовых нужд, так и для обогрева жилых помещений, на предприятиях различных масштабов, на овощных плантациях. Такой способ получения энергии стал достаточно популярен в Европейских государствах, для которых экономия средств стоит на первом месте: США, Китай, Германия и так далее.

Для всего мира массовый переход на солнечную энергию означает прорыв в современных технологиях, которые обеспечивают большие возможности обеспечения населения планеты бесплатным электричеством, не оказывающим пагубное воздействие на атмосферу.

Использование такого рода коллекторов является прекрасной альтернативой электрического и газового отопления, так как является экологически чистым устройством, не осуществляющим выбросы в атмосферу. Помимо этого наибольшим достоинством использования такого рода устройств является экономическая выгода. опубликовано econet.ru

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: