Теплопотери дома, расчет теплопотерь

Теплопотери дома, расчет теплопотерь

Выберите город tнар = – o C

Введите температуру воздуха в помещении; tвн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада α =

Площадь наружных стен, кв.м.

Материал первого слоя λ =

Толщина первого слоя (в метрах).

Материал второго слоя λ =

Толщина второго слоя (в метрах).

Материал третьего слоя λ =

Толщина третьего слоя (в метрах).

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

R =

Введите площадь окон, кв.м.

Теплопотери через окна Вт

Теплопотери через потолок или крышу развернуть свернуть

Выберите вид потолка

Введите площадь потолка, кв.м.

Материал первого слоя λ =

Толщина первого слоя (в метрах).

Материал второго слоя λ =

Толщина второго слоя (в метрах).

Материал третьего слоя λ =

Толщина третьего слоя (в метрах).

Теплопотери через потолок Вт

Теплопотери через пол развернуть свернуть

Выберите вид пола

Введите площадь пола, кв.м.

Материал первого слоя λ =

Толщина первого слоя (в метрах).

Материал второго слоя λ =

Толщина второго слоя (в метрах).

Материал третьего слоя λ =

Толщина третьего слоя (в метрах).

Теплопотери через пол Вт

Материал первого слоя λ =

Толщина первого слоя (в метрах).

Материал второго слоя λ =

Толщина второго слоя (в метрах).

Материал третьего слоя λ =

Толщина третьего слоя (в метрах).

Площадь зоны 1, кв.м.

Площадь зоны 2, кв.м.

Площадь зоны 3, кв.м.

Площадь зоны 4, кв.м.

Теплопотери через пол Вт

Теплопотери на инфильтрацию или подогрев холодного приточного воздуха развернуть свернуть

Введите, сколько людей будет жить в доме постоянно.

Теплопотери на инфильтрацию Вт

Нагрев горячей воды ( ГВС ) развернуть свернуть

Введите, сколько людей будет жить в доме постоянно.

Мощность на нагрев горячей воды Вт

О программе развернуть свернуть

Очень часто на практике принимают теплопотери дома из расчета 100 Вт/м2. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют много времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

Методика расчета теплопотерь здания взята по СНиП 2.04.05-91, приложение 9. Она приведена на странице расчет теплопотерь дома.

Коэффициенты теплопроводности строительных материалов взяты по СНиП 2-3-79, приложение 3 для нормального влажностного режима нормальной зоны влажности.

Онлайн калькулятор расчёт теплопотерь дома. EnergyLEX ®

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитывать, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Как посчитать теплопотери в соседнее помещение?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно.

Как рассчитать теплопотери частного дома при его проектировании, строительстве и выборе системы отопления

Расчет теплопотерь — это важный момент при проектировании, строительстве частного дома и выборе типа системы отопления. Исходя из расчета теплопотерь можно выбрать оптимальный материал для стен будущего дома, подобрать систему отопления и рассчитать её необходимые характеристики.

В холодный период года, внутри дома и за его пределами температуры будут разными. Согласно законам физики, система «улица — внутридомовые помещения», будет стремиться к равновесию. Внутренние помещения дома будут терять часть своего тепла. Это и есть теплопотери. Сколько тепла и как быстро потеряет дом, будет зависеть от нескольких факторов (материала стен, типа утеплителя, материала окон и т.д.). Чем больше теплопотери, тем больше тепла необходимо для отопления дома. На основе данных о теплопотерях, для их компенсации и обогрева внутренних помещений, выбирается тип системы отопления и можно рассчитать её минимально необходимую мощность. Если все предварительные расчеты и выводы сделаны правильно, то энергоэффективность дома будет на высоте и для его обогрева будет требоваться меньше тепла, и, соответственно, потребуется меньший расход газа, электроэнергии, дров или угля (в зависимости от типа системы отопления).

Расчет теплопотерь дома ведется по нескольким пунктам:

  • теплопотери через стены
  • теплопотери через окна
  • теплопотери через потолки
  • теплопотери через пол
  • теплопотери на инфильтрацию (теплопотери через вентиляцию, щели в окнах, дверях и т.д.)
Читайте также:
Фасадные панели : стеновые и облицовочные элементы для наружной отделки фасада дома, монтаж

Расчеты теплопотерь делаются по формулам, в соответствии с таблицами коэффициентов теплопроводности материалов.

Расчет теплопотерь будущего дома и подбор оптимального оборудования для системы отопления можно заказать у компании проектировщика. Цены на расчет теплопотерь дома при онлайн заказе довольно демократичны. Это примерно 40-50 рублей за 1 квадратный метр.

Можно рассчитать их самостоятельно, вооружившись справочниками, таблицами и калькулятором.

Можно воспользоваться онлайн калькуляторами, коих немало в интернете. В онлайн калькуляторе необходимо выбрать параметры дома (площадь, материал стен, окна и т.д.) и регион, где будет строиться дом. Полученный результат расчета теплопотерь окажется практически таким же по точности, как если бы делали заказ на данный вид работ у компании проектировщика. Плюсом онлайн калькуляторов является то, что Вы сможете, выбирая различные варианты материалов стен, их толщину, параметры окон и т.д., увидеть как будут меняться теплопотери при изменении исходных данных.

Рассмотрим, как пример, расчет теплопотерь дома с помощью одного из онлайн калькуляторов для расчета теплопотерь дома.

Всё что надо сделать — это внести в программу исходные данные (для примера, рассчитаем теплопотери для проектирования и строительства частного дома площадью 100 квадратных метров в Самаре):

  • город — Самара
  • желаемая температура воздуха в помещении — +20 градусов
  • площадь наружных стен — 107 кв.м.
  • материал стен (1-й слой) — кладка из силикатного кирпича
  • толщина первого слоя — 0,375 м.
  • материал стен (2-й слой) — минвата
  • толщина второго слоя — 0,10 м.
  • окна — двухкамерный стеклопакет
  • площадь окон — 13,5 кв.м.
  • потолок — под неотапливаемым чердаком
  • площадь потолка — 100 кв.м.
  • материал потолка — железобетон
  • толщина потолка — 0,08 м.
  • пол — над неотапливаемым подвалом без световых проемов в стенах
  • площадь пола — 100 кв.м.
  • материал пола — бетон
  • толщина пола — 0,1 м.
  • жилая площадь для расчета теплопотерь на инфильтрацию — 55 кв.м.

Результат расчета:

Теплопотери через стены — 1645 Вт.

Теплопотери через окна — 1397 Вт.

Теплопотери через потолок — 18943 Вт.

Теплопотери через пол — 3147 Вт.

Теплопотери на инфильтрацию — 2507 Вт.

ОБЩИЕ ТЕПЛОПОТЕРИ ДОМА — 27,6 кВт.

Можно посмотреть каков будет результат, если немного «поиграть» некоторыми исходными данными.

Например, если материал стен (силикатный кирпич) заменить на газоблок D400, то общие теплопотери дома сократятся на 3% и составят 26,8 кВт. А замена двухкамерных стеклопакетов окон на однокамерные увеличит теплопотери на 1,3%. Если на железобетонные плиты потолка вторым слоем уложить минвату толщиной 5 см., то общие теплопотери дома сократятся на 51%!

Таким образом, расчет с помощью онлайн калькулятора если и окажется немного менее точным, чем расчет, заказанный у компании проектировщика, то все равно позволит оценить теплопотери дома при проектировании и подборе материалов для строительства дома. Так же данный расчет позволит определиться с типом и характеристиками системы отопления для дома.

Расчет мощности и подбор котла отопления.

Если подбирать мощность котла без расчетов, то считается, что мощность котла должна быть примерно 1 кВт на 10 кв.м площади дома. Площадь нашего «условно проектируемого» дома — 100 кв.м. Значит котел системы отопления должен быть мощностью, примерно, 10 кВт.

Для более точного расчета с учетом рассчитанных нами теплопотерь дома, опять воспользуемся онлайн калькулятором «расчета мощности котла».

Среднее время отопительного сезона в Самаре и Самарской области составляет 187 дней. Общие теплопотери дома мы уже рассчитали. Вводим исходные данные в калькулятор и получаем результат:

Далее необходимо ввести поправочный коэффициент «запаса мощности» для приобретаемого котла для системы отопления. Обычно этот коэффициент берется в диапазоне от 1,2 до 1,4. Получается, что мощность котла системы отопления для нашего дома должна быть 12,6 — 14,7 кВт.

Далее встает вопрос какой тип котла отопления выбрать (твердотопливный, электрический, газовый и т.д.). Со всеми типами котлов отопления и ценами на них можно ознакомиться здесь

От типа выбранного типа котла будет зависеть не только его стоимость и удобство эксплуатации, но и затраты на отопление за отопительный сезон.

Приблизительные затраты на топливо для различных типов котлов за отопительный сезон:

  • Электроэнергия — 125400 рублей (27261 кВт*ч при стоимости 1 кВт*ч — 4,6 руб.)
  • Газ — 30251 рубль (3687 м3 при стоимости 1 м3 — 7,99 руб.)
  • Дрова дубовые — 34080 рублей (21,3 м3 при стоимости 1 м3 — 1600 руб.)
  • Уголь каменный — 24912 рублей (5,19 т при стоимости 1 т — 4800 руб.)
Читайте также:
Трубогиб для профильной трубы - чем лучше гнуть профиль

Понятно, что все расчеты, проведенные в статье, не могут быть идеально точными, как говорится, «до копейки и сантиметра». Но их уровень достоверности абсолютно достаточен для проектирования и строительства частного дома и для выбора и расчета системы отопления дома.

Теплотехнический расчет — калькулятор теплопотерь дома

Расчет тепловых потерь дома с помощью удобного калькулятора по СНиП – расчет теплопотерь помещения через стены/пол/потолок/окна онлайн и по формулам.

  • Другие варианты расчета
  • Расчёт
  • Сохранить
  • Справка
  • Материалы
  • Установить на свой сайт
  • Комментарии

Теплотехнический калькулятор позволяет выполнить расчет тепловых потерь дома или отдельного помещения через ограждающие конструкции по СНиП – теоретическое обоснование указано ниже. Для начала расчета укажите город проживания или ближайшую столицу субъекта (только Россия), чтобы получить значения температуры воздуха наиболее холодной пятидневки по СП 131.13330.2012 «Строительная климатология» (можно указать значения самостоятельно). Далее требуется выбрать ограждения, которые необходимо учитывать при подсчете (стены, окна, потолок, пол), также можно рассчитать потери на инфильтрацию (вентиляцию). Для каждого параметра можно выбрать два слоя (внешний, внутренний). Чтобы получить результат, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»
  • СНиП 2.04.07-86* «Тепловые сети»
  • СНиП 2.08.01-89* «Жилые здания»
  • СНиП II-3-79* «Строительная теплотехника»
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»
  • ГОСТ 22270-76 «Оборудование для кондиционирования воздуха, вентиляции и отопления»
  • ГОСТ 31311-2005 «Приборы отопительные»

Теоретическое обоснование расчета тепловых потерь

Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

  • S – площадь помещения, м 2 ;
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • R – термическое сопротивление материала, (м 2 × °С)/Вт.

Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:

  • Rм – термическое сопротивление материала, Вт/(м 2 × °С);
  • Rв – термическое сопротивление внутренней поверхности стены, Вт/(м 2 × °С);
  • Rн – термическое сопротивление наружной поверхности стены, Вт/(м 2 × °С).

В свою очередь, показатели термического сопротивления равны:

  • L – толщина материала, м;
  • λ – теплопроводность материала, Вт/(м × °С)
  • αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м 2 × °С);
  • αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м 2 × °С).

Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».

Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:

Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

  • Gi – расход воздуха, м 3 /ч;
  • c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).

Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:

Измерение теплопотерь дома (6 методов)

Это – мои личные, любительские методики. Дача – летняя, перестроенная в зимнюю.
Первое измерение полных теплопотерь.
Это было зимой 2010 года в самый мороз (-37оС). Котел работал на полную мощность без остановки, на радиаторах все термоголовки были полностью открыты, а температура в доме не поднималась выше 20оС. Это меня и навело на мысль, что сейчас, как раз, удобно рассчитать теплопотери.
Через что теряется тепло:
– Через конструкции (стены, потолки, окна, дверь, пол).
– Через вентиляцию.
– Через слив нагретой воды в канализацию (“через ГВС”).
Главная мысль и теория расчета:
Теплопотери дома строго равны мощности, требуемой для поддержания в нем стабильной температуры, при этом теплопотери дома через конструкции пропорциональны разнице температур между улицей и домом. Теплопотери измеряются в Ваттах (киловаттах). Чтобы было понятней почему именно в Ваттах – можно сказать так: теплопотери измеряются в потерях энергии в единицу времени. Т.е. – в кВтчасах в час (кВт* час / час ). Здесь часы сокращаются и остаются только киловатты. Я это описал здесь , а подробней – здесь.
Подход к расчетам:
В течении некоторого времени (лучше – не менее нескольких часов) измеряем среднюю мощность, затрачиваемую на поддержание стабильной температуры в доме и среднюю разность температур дом-улица (дельту). Получаем теплопотери при данной дельте. А потом, при необходимости приведения теплопотерь к общепринятой уличной температуре делаем это через обычную пропорцию. При необходимости, делим полученную цифру на отапливаемую площадь пола дома. Также можно посчитать её в годовом исчислении (в кВт*часах на кв. метр в год = кВт∙ч/(кв.м.*год)).
Основная проблема здесь – правильно посчитать указанную мощность. Дельту и площадь дома – гораздо проще.
Итак, измерение и расчет:
Измерение мощности:
Мой котел по паспорту имеет предельную выходную тепловую мощность 24кВт при температуре воды +80оС.
У меня было +65оС и теплоноситель не вода, а – пропиленгликоль, при котором мощность отдаваемая котлом снижается на 20%.
Таким образом, мощность отдаваемая в тот день моим котлом составила 24*65/80*0,8 = 15,6кВт. Она же – предельная мощность котла.
Нахождение дельты:
Разница температур была: -37оС-20оС=57оС. Посчитаем для уличной температуры минус 20оС, т.е. для разницы в 43оС. Что, в прочем, не так важно, т.к. потом можно будет сделать перерасчёт.
Отапливаемая площадь дома: 120кв.метров.
То бишь: теплопотери дома тогда у меня получились равными 15600Вт*(43оС/57оС)/120кв.м. = 98Вт/кв.м. площади пола при минус 20оС на улице.
Моя оценка предельной погрешности этого метода измерения +-10%.
Второй (мой) метод измерения (по сути – тот же):
При менее морозной температуре на улице, котел, при наличии комнатного термостата, периодически включается и отключается. Соотношение времени его работы к длительности полного временного цикла включений/отключений необходимо умножить на результат вычисления по формуле, приведенной выше, но с подставлением текущей уличной температуры. Правда, при таком методе надо быть уверенным, что котел во время работы не снижает автоматически свою мощность путем модуляции в газовой горелке. Обязательно см. Примечание 2.
Такие измерения я проводил несколько раз, они с приличной точностью совпадали друг с другом и с приведенной выше цифрой (98Вт/кв.метр). После проведения первого небольшого этапа работ по доп. утеплению, величина теплопотерь моей дачи стала равна приблизительно 90Вт/кв.метр площади пола (=0,09кВт/кв.м.).
Для режима дачной эксплуатации эта цифра, быть может, и удовлетворительная, но аппетиты, как обычно, растут и я задумался о том, чтобы со временем переехать сюда жить. А это уже совсем другие затраты на газ и, поэтому вероятно, необходим другой уровень утепления дома, окупаемость которого, несомненно, нужно просчитывать, а не стремить уровень утепления почти к бесконечности, как это делают в Пассивных домах.
Для того, чтобы в дальнейшем вычленить из полных энергозатрат другие энергозатраты, а также – определить целесообразность и выгодную мне стоимость возможного утепления, пересчитаю свои полные энергозатраты в формат “кВт∙ч/кв.м. в год”.
Исходные данные:
– Среднегодовая температура в Москве равна +5оС (дельта 23-5=18оС).
– В году примерно 8640 часов.
Считаем: 0,09кВт/кв.м*8640ч*18оС/43оС = 325 кВт * ч/(кв.м.*год).
Это – полные теоретические теплопотери дачи (они же – энергозатраты), как если бы в ней постоянно жили люди, в среднем 2 человека (безвыездно!), что соответствует жизни там семьи из 3-4 человек с выездами на работу, в школу и т.д.
Примечание 2:
При достижении установленной на (современном) котле температуры теплоносителя, мощность нагрева плавно снижается, чтобы удержать указанную температуру.
Измерения показали, что из 15 минут работы горелки примерно 10 минут идет процесс достижения заданной температуры теплоносителя, т.е. в это время у котла мощность – максимальная, а оставшиеся 5 минут котел плавно снижает (модуляцией) мощность, чтобы удержать заданную температуру теплоносителя.
Обычно современные котлы могут за счет модуляции в горелке автоматически снижать свою мощность примерно в 2 раза.
Т.е. 2/3 времени работы горелки мощность котла – 100%, а 1/3 времени мощность от максимальной условно считаем равной 75%. Т.е., средняя мощность котла была 92% от максимальной. Цифра 75%, конечно, слегка от фонаря, но гораздо лучше, чем ничего. Причем, понятно, что ошибка в этой цифре слабо влияет на результат.
Т.е. для моего случая – 15600Вт*0,92=14300Вт.
Третий метод измерения:
По газовому счетчику, зная расход газа Вашим котлом и его мощность.
Четвертый метод измерения теплопотерь:
С помощью электрического нагревателя известной мощности и измерителя времени его работы. Расчет аналогичен методу №2.
Пятый метод измерения теплопотерь (для электро-отопления):
По электро-счетчику, за вычетом затрат на наружные (уличные) приборы. Дело в том, что от всех приборов, находящихся внутри дома вся энергия остается в доме как бы в помощь отоплению.
Примечание 3:
Да, забыл сообщить о том, что для более высокой точности измерения необходимо к измеренной цифре теплопотерь добавить среднюю мощность работавшего в доме в процессе измерения электрооборудования (конечно, кроме пятого метода).
Дело в том, что это электрооборудование тоже излучает тепло ровно в соответствии со своей паспортной электро-мощностью.
Мощность, выделяемая каждым взрослым человеком составляет примерно 50-100Вт, её тоже надо учитывать, особенно в очень хорошо утепленных домах.
Ну, и, что думаю, очевидно – в процессе измерения никакие другие нагреватели не должны быть включены, окна должны быть закрыты, штатная система вентиляции должна, конечно работать.
Также не мешает знать, что чем холодней на улице – тем точнее будет измерение.
Шестой метод измерения теплопотерь:
Для тех, у кого есть тепловой аккумулятор.
Добавлено 27.11.14г.:
Скрупулезно рассчитал теплопотери своего дома. Они довольно близко совпали с моими измерениями.
Это – хороший признак.
Для тех, кто предпочтет расчеты измерениям:
Для получения достоверного результата расчета надо быть уверенным, что в утеплении нет строительных ошибок, например, щелей и прочих мостиков холода. В противном случае ваши расчеты окажутся неверными.

Теплопотери дома, расчет теплопотерь.

Методика расчета теплопотерь частного дома, потери тепла в жилых и нежилых помещениях, примеры расчета теплопотерь.

Читайте также:
Шпаклевка для бетонного пола - выбор и нанесение!

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Предписывающий подход – это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру: для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома. Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи.

Читайте также:
Турбощетка для пылесоса: для чего нужна и как выбрать?

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q – это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2 );
  • ΔT – это разница между температурой на улице и в комнате (°С);
  • R – это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

Материал и толщина стены

Сопротивление теплопередаче Rm.

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

Сруб из бревна Ø 25
Ø 20

Толщ. 20 сантиметров
Толщ. 10 сантиметров

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Тнар. = –30 °С. Твнутр. = 20 °С.)

Тип окна

RT

q. Вт/м2

Q. Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

Примечание
• Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
• Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
• Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Читайте также:
Хозблоки с дровяником : сараи с дровником и туалетом под одной крышей на даче, делаем своими руками, проекты и чертежи

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной –30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2 ).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

Рубленая стена (25 см)
с внутр. обшивкой

Рубленая стена (20 см)
с внутр. обшивкой

Стена из бруса (18 см)
с внутр. обшивкой

Стена из бруса (10 см)
с внутр. обшивкой

Каркасная стена (20 см)
с керамзитовымзаполнением

Стена из пенобетона (20 см)
с внутр. штукатуркой

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения

Наружная
температура. °С

Теплопотери.
кВт

Окно с двойным остеклением

Сплошные деревянные двери (двойные)

Деревянные полы над подвалом

Далее давайте разберем пример расчета тепловых потерь 2 различных комнат одной площади при помощи таблиц.

Пример 1.

Угловая комната (1 этаж)

  • 1 этаж.
  • площадь комнаты – 16 м 2 (5х3.2).
  • высота потолка – 2.75 м.
  • наружных стен – две.
  • материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы – деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура –30 °С.
  • требуемая температура в комнате +20 °С.

Далее выполняем расчет площади теплоотдающих поверхностей.

  • Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: Sпола = 5х3.2 = 16 м 2
  • Площадь потолка: Sпотолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Qстен = 18.94х89 = 1686 Вт.
  • Qокон = 3.2х135 = 432 Вт.
  • Qпола = 16х26 = 416 Вт.
  • Qпотолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна – 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура –30°С.
  • требуемая температура в комнате +20°С.
Читайте также:
Установка септика. Как правильно установить септик в частном доме своими руками?

Далее рассчитываем площади теплоотдающих поверхностей.

  • Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: Sбок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: Sокон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: Sпотолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Qторц.стен = 12х89 = 1068 Вт.
  • Qскатов.стен = 8.4х142 = 1193 Вт.
  • Qбок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Qокон = 6.4х135 = 864 Вт.
  • Qпотолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Тнар.=–20 °С. Твнутр.=20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро­
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Ro.

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре –25 °С необходимо 213 Вт на 1 м 2 общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – этот показатель будет составлять: при –25 °С – 173 Вт на м 2 общей площади, а при –30 °С – 177 Вт.

Теплопотери дома, расчет теплопотерь

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

  • СНиП 23-02-2003 “Тепловая защита зданий”
  • СП 23-101-2004 “Проектирование тепловой защиты зданий”
  • ГОСТ Р 54851—2011 “Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче”
  • СТО 00044807-001-2006 “Теплозащитные свойства ограждающих конструкций зданий”
Читайте также:
Ширма для комнаты и варианты, наиболее популярные сегодня

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)
Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0.92 -26 ˚С
Продолжительность отопительного периода 204 суток
Средняя температура воздуха отопительного периода -2.2 ˚С
Относительная влажность воздуха наиболее холодного месяца 84 %
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП) 4528.8 °С•сут
Средние месячные и годовые значения температуры и парциального давления водяного пара
Месяц Т, ˚С E, гПа Месяц Т, ˚С E, гПа
Январь -7.8 3.3 Июль 19.1 15.7
Февраль -6.9 3.3 Август 17.1 14.6
Март -1.3 4.3 Сентябрь 11.3 10.9
Апрель 6.5 6.6 Октябрь 5.2 7.5
Май 13.3 10 Ноябрь -0.8 5.2
Июнь 17 13.3 Декабрь -5.2 3.9
Год 5.6 8.2
  • Температура холодной пятидневки с обеспеченностью 0.92 – при расчете приведенного сопротивления теплопередаче и температуры внутренних поверхностей ограждающих конструкций.
  • Продолжительность отопительного периода и средняя температура воздуха отопительного периода – при расчете тепловых потерь.
  • Условия эксплуатации помещения – определяют коэффициент теплопроводности материала в зависимости от влажностного режима помещения.
  • Количество градусо-суток отопительного периода (ГСОП) – при определении значения требуемого приведенного сопротивления теплопередаче.
  • Средние месячные и годовые значения температуры и парциального давления водяного пара – при расчете защиты отпереувлажнения ограждающей конструкции.
Жилое помещение (Стена)

Вариант “Ненормированное помещение” предназначен для эмуляции расчетов с климатическими параметрами помещений, выходящими за рамки гигиенических норм.

Расчеты при выборе этого варианта не могут расцениваться, как соответсвующие нормам, а результаты, полученные при проведении этих расчетов, не могут быть основанием для принятия того или иного проектного решения.

Влажность в помещении* ϕ %
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздуху n
Коэффициент теплоотдачи внутренней поверхности α(int)
Коэффициент теплоотдачи наружной поверхности α(ext)
Нормируемый температурный перепад Δt(n) °С
* – параметр используется при расчете раздела “Защита от переувлажнения ограждающих конструкций” (см. закладку “Влагонакопление”).
  • Помещение – определяет значение влажности, используемое при определении условий эксплуатации помещения, и диапазоны, в пределах которых можно выбрать температуру внутри помещения.
  • Тип конструкции – необходимо для выбора параметров, определяющих нормирование требуемых уровней тепловой защиты и защиты от переувлажнения.
Слои конструкции
Конструкция
Тип Материалы Толщина, мм λ μ (Rп) Управление
Внутри
Снаружи
Вставить слой Информация
  • Конструкция– в таблицу добавляются материалы, составляющие слои выбранной ограждающей конструкции. Для выбранных слоев можно определить тип из следующих вариантов:
    • Однородный – слой, состоящий из одного материала, без теплопроводных включений.
    • Неоднородный – слой, в котором есть теплопроводные включения, влияние которых определяется коэффициентом односродности. Значения этого коэффициента обычно представлены в специальных справочных таблицах.
    • Каркас – слой с деревянным каркасом. Возможно задание ширины каркаса и шага между его элементами.
    • Перекрестный каркас – слой с деревянным каркасом, расположенном перепендикулярно основному каркасу.
    • Кладка – слой состоящий из штучных элементов кладки и швов с раствором. Возможно задание геометрических размеров элементов кладки и толщины швов.
    • Перемещение слоя – при наличии нескольких слоев возможо их перемещение относительно друг друга. Кнопки “Переместить внутрь” и “Переместить наружу”.
    • Включение выключение слоя – позволяет на время не учитывать слой в расчетах, не удаляя его из конструкции. Кнопка “Включить слой” “Выключить слой”
    • Редактирование параметров материала – если требуемого матерала нет в справочнике материалов, то можно выбрать другой материал и во всплывающем окне задать требуемые параметры. Кнопка “Изменить характеристики”.
    • Удаление слоя – удаляет слой из ограждающей конструкции. Кнопка “Удалить слой”.
    Внутри: 20°С (55%) Снаружи: -10°С (85%)
    • Температура внутри помещения – при определении тепловых потерь через ограждающую конструкцию.
    • Влажность внутри помещения – для помещения с типом “Ненормированное” при определение защиты от переувлажнения..
    Слои конструкции (изнутри наружу)
    Тип Толщина Материал λ R Тmax Тmin
    Термическое сопротивление Rа
    Термическое сопротивление Rб
    Термическое сопротивление ограждающей конструкции
    Сопротивление теплопередаче ограждающей конструкции [R]
    Требуемое сопротивление теплопередаче
    Санитарно-гигиенические требования [Rс]
    Нормируемое значение поэлементных требований [Rэ]
    Базовое значение поэлементных требований [Rт]
    Координата плоскости максимального увлажнения X мм
    Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения Rп(в) (м²•ч•Па)/мг
    Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкции Rп(н) (м²•ч•Па)/мг
    Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации Rп.тр(1) (м²•ч•Па)/мг
    Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха Rп.тр(2) (м²•ч•Па)/мг
    Сопротивление паропроницанию конструкции Rп (м²•ч•Па)/мг
    Требуемое сопротивление паропроницанию Rп.тр (м²•ч•Па)/мг
    Слои конструкции (изнутри наружу)
    Толщина Материал μ Rп X Rп(в) Rп.тр(1) Rп.тр(2)
    Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
    Сопротивление теплопередаче R ±R, % Q ±Q, Вт•ч
    Санитарно-гигиенические требования [Rс]
    Нормируемое значение поэлементных требований [Rэ]
    Базовое значение поэлементных требований [Rт]
    Сопротивление теплопередаче ограждающей конструкции [R]
    R + 10%
    R + 25%
    R + 50%
    R + 100%

    Сайту 10 лет! 15 февраля 2013 года начала функционировать первая версия нашего калькулятора теплотехнического расчета ограждающих конструкций

    Актуализация данных климатологии (СП 131.13330.2020) Внесены изменения в БД климатических параметров для России в соответствии с вступившим в действие СП 131.13330.2020 .

    Актуализация климатических параметров для Казахстана Внесены изменения в БД климатических параметров для Казахстана в соответствии с действующими нормативными документами .

    Актуализация в соответствии с норматиными документами Актуализированы изменения в СП 50.13330.2012 и СП 131.13330.2018 .

    Добавлены проекты Добавлены возможности хранения ссылок на расчеты и расчета тепловых потерь здания.

    Добавлен калькулятор тепловой защиты полов по грунту Калькулятор позволяет рассчитать уровень тепловой защиты и тепловые потери полов по грунту.

    Запущена новая версия сайта 24.03.2017 После тестирования запущена новая версия сайта. Возможны проблемы из-за “застрявших” в кэше старых скриптов. Рекомендуется их перезагрузка. В большинстве браузеров это Ctrl-F5

    Открыта группа “В контакте” В социальной сети “В контакте” открыта группа, посвященная проекту СмартКалк.

    Актуализация климатических параметров Внесены изменения в БД климатических параметров для России и Казахстана в соответствии с действующими нормативными документами .

    Сохраняем свой материал в ссылке Добавлена возможность сохранять в ссылке материалы с измененными пользователем параметрами .

    Для исследователей и экспериментаторов Для экспериментаторов, исследователей и вообще всех, кому спокойно не сидится на месте, добавлен тип помещения: “Ненормированное” .

    Расширен функционал управления слоями конструкции В целях удобства работы с калькулятором добавлена возможность временного отключения слоев конструкции .

    Пенофол, термофол, теплофол и другие. Здесь Вы найдете ответы на вопросы:
    – Почему в справочнике нет материала “Пенофол” (“Термофол”, “Теплофол” . )?
    – Как быть, если в моей конструкции используется такой материал?

    Расчет каркасных конструкций Как рассчитать каркасную конструкцию?
    Какие варианты каркасов можно использовать в калькуляторе?

    Расчёт теплопотерь частного дома с примерами

    Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов. Без предварительного расчёта тепловой проницаемости и влагонакопления теряется вся суть жилищного строительства.

    Расчёт теплопотерь частного дома с примерами

    Физика теплотехнических процессов

    Различные области физики имеют много схожего в описании явлений, которые ими изучаются. Так и в теплотехнике: принципы, описывающие термодинамические системы, наглядно перекликаются с основами электромагнетизма, гидродинамики и классической механики. В конце концов, речь идёт об описании одного и того же мира, поэтому не удивительно, что модели физических процессов характеризуются некоторыми общими чертами во многих областях исследований.

    Суть тепловых явлений понять легко. Температура тела или степень его нагрева есть не что иное, как мера интенсивности колебаний элементарных частиц, из которых это тело состоит. Очевидно, что при столкновении двух частиц та, у которой энергетический уровень выше, будет передавать энергию частице с меньшей энергией, но никогда наоборот. Однако это не единственный путь обмена энергией, передача возможна также посредством квантов теплового излучения. При этом базовый принцип обязательно сохраняется: квант, излученный менее нагретым атомом, не в состоянии передать энергию более горячей элементарной частице. Он попросту отражается от неё и либо пропадает бесследно, либо передаёт свою энергию другому атому с меньшей энергией.

    Передача тепла в твердом теле

    Термодинамика хороша тем, что происходящие в ней процессы абсолютно наглядны и могут интерпретироваться под видом различных моделей. Главное — соблюдать базовые постулаты, такие как закон передачи энергии и термодинамического равновесия. Так что если ваше представление соответствует этим правилам, вы легко поймёте методику теплотехнических расчётов от и до.

    Понятие сопротивления теплопередаче

    Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.

    Сравнение энергоэффективности различных строительных материалов

    Сравнение энергоэффективности различных строительных материалов

    Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

    • Rt — термическое сопротивление участка, К/Вт;
    • T2 — температура начала участка, К;
    • T1 — температура конца участка, К;
    • P — тепловой поток, Вт.

    В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

    Rt = l / (λ·S)

    • Rt — термическое сопротивление участка цепи, К/Вт;
    • l — длина участка тепловой цепи, м;
    • λ — коэффициент теплопроводности материала, Вт/(м·К);
    • S — площадь поперечного сечения участка, м 2 .

    Факторы, влияющие на теплопотери

    Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

    Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

    • через толщу бетона
    • через стальные стержни
    • от стальных стержней к бетону

    Теплопотери через мостики холода в бетоне

    Теплопотери через мостики холода в бетоне

    Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

    В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом. Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

    Уменьшение теплопотерь и смещение точки росы в утеплитель при наружном утеплении стены

    Уменьшение теплопотерь и смещение точки росы в утеплитель при наружном утеплении стены

    Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

    Дифференцированные схемы расчёта

    Простейший способ установить размер тепловых потерь здания — суммировать значения теплового потока через конструкции, которыми это здание образовано. Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой. Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

    • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
    • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
    • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
    • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.

    Q = S · ( Δ T / Rt)

    • Q —тепловые потери, Вт;
    • S — площадь стен, м 2 ;
    • ΔT — разница температур внутри и снаружи помещения, ° С;
    • Rt — сопротивление теплопередаче, м 2 ·°С/Вт.

    Пример расчёта

    Прежде чем перейти к демонстрационному примеру, ответим на последний вопрос: как правильно рассчитать интегральное термическое сопротивление сложных многослойных конструкций? Это, конечно, можно сделать вручную, благо, что в современном строительстве используется не так много типов несущих оснований и систем утепления. Однако учесть при этом наличие декоративной отделки, интерьерной и фасадной штукатурки, а также влияние всех переходных процессов и прочих факторов достаточно сложно, лучше воспользоваться автоматизированными вычислениями. Один из лучших сетевых ресурсов для таких задач — smartcalc.ru, который дополнительно составляет диаграмму смещения точки росы в зависимости от климатических условий.

    Теплотехнический онлайн-калькулятор ограждающих конструкций

    Для примера возьмём произвольное здание, изучив описание которого читатель сможет судить о наборе исходных данных, необходимых для расчёта. Имеется одноэтажный дом правильной прямоугольной формы размерами 8,5х10 м и высотой потолков 3,1 м, расположенный в Ленинградской области. В доме выполнен неутеплённый пол по грунту досками на лагах с воздушным зазором, высота пола на 0,15 м превышает отметку планирования грунта на участке. Материал стен — шлаковый монолит толщиной 42 см с внутренней цементно-известковой штукатуркой толщиной до 30 мм и наружной шлаково-цементной штукатуркой типа «шуба» толщиной до 50 мм. Общая площадь остекления — 9,5 м 2 , в качестве окон использован двухкамерный стеклопакет в теплосберегающем профиле с усреднённым термическим сопротивлением 0,32 м 2 ·°С/Вт. Перекрытие выполнено на деревянных балках: снизу оштукатурено по дранке, заполнено доменным шлаком и сверху укрыто глиняной стяжкой, над перекрытием — чердак холодного типа. Задача расчёта теплопотерь — формирование системы теплозащиты стен.

    Первым делом определяются тепловые потери через пол. Поскольку их доля в общем оттоке тепла наименьшая, а также по причине большого числа переменных (плотность и тип грунта, глубина промерзания, массивность фундамента и т. д.), расчёт теплопотерь проводится по упрощённой методике с использованием приведённого сопротивления теплопередаче. По периметру здания, начиная от линии контакта с поверхностью земли, описывается четыре зоны — опоясывающих полосы шириной по 2 метра. Для каждой из зон принимается собственное значение приведённого сопротивления теплопередаче. В нашем случае имеется три зоны площадью по 74, 26 и 1 м 2 . Пусть вас не смущает общая сумма площадей зон, которая больше площади здания на 16 м 2 , причина тому — двойной пересчёт пересекающихся полос первой зоны в углах, где теплопотери значительно выше по сравнению с участками вдоль стен. Применяя значения сопротивления теплопередаче в 2,1, 4,3 и 8,6 м 2 ·°С/Вт для зон с первой по третью, мы определяем тепловой поток через каждую зону: 1,23, 0,21 и 0,05 кВт соответственно.

    Используя данные о местности, а также материалы и толщину слоёв, которыми образованы стены, на упомянутом выше сервисе smartcalc.ru нужно заполнить соответствующие поля. По результатам расчёта сопротивление теплопередаче оказывается равным 1,13 м 2 ·°С/Вт, а тепловой поток через стену — 18,48 Вт на каждом квадратном метре. При общей площади стен (за вычетом остекления) в 105,2 м 2 общие теплопотери через стены составляют 1,95 кВт/ч. При этом потери тепла через окна составят 1,05 кВт.

    Перекрытие и кровля

    Расчёт теплопотерь через чердачное перекрытие также можно выполнить в онлайн-калькуляторе, выбрав нужный тип ограждающих конструкций. В результате сопротивление перекрытия теплопередаче составляет 0,66 м 2 ·°С/Вт, а потери тепла — 31,6 Вт с квадратного метра, то есть 2,7 кВт со всей площади ограждающей конструкции.

    Итого суммарные теплопотери согласно расчётам составляют 7,2 кВт·ч. При достаточно низком качестве строительных конструкций здания этот показатель очевидно сильно ниже реального. На самом деле такой расчёт идеализирован, в нём не учтены специальные коэффициенты, продуваемость, конвекционная составляющая теплообмена, потери через вентиляцию и входные двери. В действительности, из-за некачественной установки окон, отсутствия защиты на примыкании кровли к мауэрлату и плохой гидроизоляции стен от фундамента реальные теплопотери могут быть в 2 или даже 3 раза больше расчётных. Тем не менее, даже базовые теплотехнические исследования помогают определиться, будут ли конструкции строящегося дома соответствовать санитарным нормам хотя бы в первом приближении.

    Теплопотери дома

    Теплопотери дома

    Напоследок дадим одну важную рекомендацию: если вы действительно хотите получить полное представление о тепловой физике конкретного здания, необходимо использовать понимание описанных в этом обзоре принципов и специальную литературу. Например, очень хорошим подспорьем в этом деле может стать справочное пособие Елены Малявиной «Теплопотери здания», где весьма подробно объяснена специфика теплотехнических процессов, даны ссылки на необходимые нормативные документы, а также приведены примеры расчётов и вся необходимая справочная информация.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: