Управление уличным освещением: рассмотрим некоторые схемы

Выбор контроллера для систем автоматического управления наружным освещением (АСУНО)

В статье рассматриваются требования к управляющим устройствам (контроллерам) в составе современных систем управления наружным освещением. Подчеркивается важность расширенных функциональных возможностей контроллеров АСУНО , обеспечивающих адресное управление и диагностику пунктов включения. В качестве иллюстраций к материалу прилагаются решения AnCom.

ФЗ № 261 «Об энергосбережении и о повышении энергетической эффективности» рассматривает ресурс повышения энергоэффективности как один из основных энергоресурсов будущего экономического роста. Основная цель Государственной программы, разработанной Минэнерго России для решения поставленных ФЗ задач, – рациональное использование топливно-энергетических ресурсов за счет реализации энергосберегающих мероприятий, повышения энергетической эффективности в секторах экономики и субъектах Российской Федерации [1].

В рамках программы энерго­сбережения активно развивается направление автоматизации систем управления наружным освещением (АСУНО). Внедрение АСУНО позволяет снизить энергопотребление, уменьшить затраты на техническое обслуживание и ликвидацию аварий, организовать дистанционный учет электроэнергии и диагностику оборудования, повысить безопасность эксплуатации за счет наличия охранно-пожарной сигнализации [2]. Для организации автоматизации процесса управления освещением в системах АСУНО используются управляющие устройства – контроллеры (рис. 1), функциональные возможности которых предопределяют надежность и глубину автоматизации системы в целом.

Рис. 1. Контроллер АСУНО AnCom RM/L : RS-485, реле управления электромагнитными пускателями, входы контроля фазных напряжений и охранно-пожарной сигнализации, встроенный GPRS/EDGE модем

Адресное управление наружным освещением

Традиционно городские линии освещения строятся по каскадному принципу, при этом каждый нижестоящий пункт включения (ПВ) получает команды управления по включению режимов работы непосредственно от линий наружного освещения вышестоящего ПВ. Таким образом, в релейных системах АСУНО разработки 60-х годов обеспечивается единый режим освещения для всех ПВ каскада. Диагностика в этих системах ведется по обобщенным параметрам типа «плавкие вставки в головном ПВ целые», «прошло включение контакторов ночного режима в каскаде». Причем конт­роль работы всего каскада осуществляется только при наличии так называемых «обратных проводов», от последнего из каскадных ПВ до головного.

Сегодня для организаций, эксплуатирующих сети наружного освещения, актуальной является задача создания систем АСУНО, обеспечивающих адресное управление и диагностику любого ПВ (как головного, так и каскадного) в любом режиме работы («вечер», «ночь», «подсветка») [3].

Адресное управление, мониторинг и контроль освещения позволяют включать отдельные ПВ, освещая с определенным уровнем яркости только те пространства, где в этом есть необходимость в конкретных условиях светового климата местности: отдельные участки проезжей части, улицы, дворы, школы и детские сады и т.п.

Выбор уровня освещенности в зависимости от времени суток определяет требование к наличию трех-четырех режимов работы АСУНО – «утро», «вечер», «ночь» и, например, «пасмурно», а также возможность выполнять до 4 включений/выключений в день при работе пункта включения в автономном режиме на основе встроенного локального расписания.

Адресная дистанционная диагностика оборудования и локализация мест возникновения неисправностей и аварий позволяет удаленно выявить проблемный ПВ и причину его отказа, избежав необходимости длительного анализа ситуации на месте путем проверки каждого пункта включения в каскаде выездной бригадой технического обслуживания.

Рис. 2. a – управление освещением определенных участков (Луч B – выкл.);
b – управление уровнем освещенности («сумерки», Луч B – выкл.)

Реализация адресного автоматического или автоматизированного управления в системах наружного освещения подразумевает использование контроллеров переключения электромагнитных пускателей на ПВ, а также создание каналов передачи данных между пунктами включения и диспетчерским центром. Зачастую при построении подобных систем использование проводных каналов экономически нецелесообразно, что предопределяет применение GPRS/EDGE-модемов – во многом благодаря повсеместному покрытию GSM-сетей и привлекательным тарифным планам для систем телемеханики и телеметрии.

Задачи контроллера АСУНО

Контроллер АСУНО предназначен для управления наружным освещением посредством независимых реле включения/выключения электромагнитных пускателей на фазах А, В, С и реле выбора рабочего фидера (основной или резервный). Поддержка трех каналов управления освещением (лучи A, B, C) позволяет освещать определенные участки, закрепленные за конкретным лучом (рис. 2 a ), либо варьировать уровень освещенности, формируя требуемый режим работы пункта включения с учетом времени суток и продолжительности светового дня (рис. 2 б ).

Основной задачей контроллера является управление электромагнитными пускателями, однако, чем выше уровень его функциональных возможностей, тем меньше необходимых компонентов требуется для построения системы АСУНО, и тем глубже уровень ее автоматизации (рис. 3). Рассмотрим некоторые дополнительные элементы контроля и управления системами наружного освещения, которые могут быть реализованы в составе контроллера.

Для осуществления адресной удаленной диагностики оборудования необходимо осуществлять контроль наличия напряжения (~220В) на основном фидере первичной сети и по каждой фазе (A, B, C) в цепях после предохранителей и пускателей, а также на входе источника бесперебойного питания (ИБП).

Рис. 3. Структурная схема контроллера AnCom RM/L в составе пункта включения

Контроль внешних внештатных событий обеспечивается подключением датчиков охранно-пожарной сигнализации с возможностью питания шлейфов и внешних датчиков от встроенного источника конт­роллера. Для оперативного реагирования и своевременного принятия решения диспетчером АСУНО необходимо реализовать автоматическую передачу на верхний уровень (через CSD/GPRS/EDGE канал или посредством SMS-сообщений) информации об изменениях состояний сигнализационных входов.

Подключение к контроллеру по интерфейсу RS-485 или RS-232 счетчиков электрической энергии для оперативного считывания показаний диспетчерским центром позволяет контролировать:

– состояние пускателей (включено/выключено) и предохранителей;

– повреждения осветительной сети, отключения по срабатыванию защиты;

– расход электроэнергии и наличие несанкционированных подключений;

– значения активной, реактивной и полной мощности по каждой фазе и по сумме фаз с указанием направления вектора полной мощности;

Читайте также:
Фундамент под баню: какой лучше? Лучшие варианты установки опалубки для фундамента

– значения фазных токов, напряжений, углов между фазными напряжениями, cos φ и т.п.;

– выход фазных токов и напряжений за заданные пределы.

Наличие встроенного в конт­роллер GSM-модема позволяет организовать беспроводной канал связи между пунктом включения и диспетчерским центром управления системой наружного освещения.

Рис. 4 . Диспетчерский пункт

Централизованное оперативное телеуправление

Централизованное оперативное телеуправление АСУНО, с непрерывным мониторингом за состоянием каналов связи и исправностью контроллера, осуществляется в ручном режиме или автоматически с диспетчерского центра – по командам оператора через GSM-канал. Использование сетей сотовой связи для создания надежного и безопасного канала обмена телемеханическими данными налагает некоторые требования на связное оборудование.

Для обеспечения надежности работы канала связи необходимо резервирование каналов передачи:

– на уровне маршрутизации – между операторами GSM-связи (две SIM-карты);

– на уровне GSM-сервисов – переход с GPRS/EDGE на CSD или SMS.

В условиях периодического разрушения каналов без сигнализации сервера и клиента (например, при перезагрузке APN-серверов у GSM-оператора) большую роль играет контроль системных зависаний, соединения и времени отсутствия данных.

Безопасность канала связи поддерживается с помощью аутентификации на этапах инициализации, установления соединения и передачи данных, в том числе:

ввод при настройке модема значений PIN-кодов SIM-карт, которые в дальнейшем хранятся в памяти модема, проверяются при запуске и недоступны для чтения;

– аутентификация доступа на APN-сервер;

– контрольный обмен идентификаторами при установлении TCP-соединения (между двумя модемами или модемом и сервером);

– контроль номера звонящего при установлении CSD-канала.

Для организации защищенного канала между устройствами сбора данных и диспетчерским центром обработки информации обязательно использование VPN-туннеля между GSM-оператором и сервером диспетчерского центра [4].

Диспетчерский центр должен иметь статический публичный IP-адрес, видимый из сети Internet. Доступ управляющего диспетчерского ПО АСУНО к интерфейсам электросчетчиков, а также входам телесигнализации и выходам теле­управления контроллеров на пунктах включения, реализуется с помощью специализированного коммуникационного серверного программного обеспечения, основная задача которого заключается в стыковке аппаратных портов контроллера с управляющим софтом по TCP- или COM-портам. Для решения подобных задач необходимо дополнительно приобретать OPC-сервер или создавать собственный инструментарий обмена данными с управляющим устройством на пунк­те включения. Поэтому наличие у производителя контроллера оригинального серверного коммуникационного ПО значительно упрощает процесс построения систем управления наружным освещением (рис. 4).

Автономное управление по расписанию

При сбоях связи или по ини­циа­тиве диспетчера контроллер должен обеспечить переход системы в автономный режим работы, согласно собственному встроенному расписанию (рис. 5). Автономное управление по расписанию в системах АСУНО предполагает:

– встроенные часы реального времени с резервным питанием;

– встроенное программируемое расписание типа «вечный календарь»;

– удаленное изменение расписания по GSM-каналу или при подключении ПК;

– до 4 включений/выключений в день по каждому из лучей – для поддержки режимов работы АСУНО с привязкой ко времени суток.

Управление уличным освещением — принципы и устройство

Сегодня этой красотой управляет автоматика

Фонари на улице и шкаф управления уличным освещением видели все. О том, что это оборудование предназначено для комфортного и безопасного перемещения по улицам все знают. Но как работает система управления им — понятно далеко не каждому.

По таким улицам ходить не только страшно, но и опасно

Расскажем подробно о системе и оборудовании, которое в нем применяется. Кроме того, дадим практические советы, как реализовать управление уличным освещением на вашем предприятии или участке возле дома, садоводческом кооперативе или предприятии на котором вы работаете.

В помощь видео, которое раскрывает возможности подобных систем:

Задачи уличного освещения

Когда солнце уходит за горизонт, уличное освещение занимает его место

Проще было бы отказаться от регулирования вообще, просто оставить гореть уличные фонари постоянно, но это не рентабельно. Поэтому и монтируют системы управления освещением.

У них несколько задач:

  1. По окончании светового дня включить фонари, по наступлению рассвета выключить.
  2. Выполнить эти же операции при ухудшении естественной освещенности улиц в силу различных природных факторов.

При таком тумане уличные фонари тоже немного могут помочь

Еще пятьдесят лет назад, только эти функции и выполнялись, об экономии электроэнергии никто не заботился, а решение более сложных задач было трудно реализуемо и затратно. Современные системы управления освещением более функциональны, они дополнительно умеют многое.

Экономия электроэнергии — одна из главных задач систем электронного управления уличным освещением

  1. Производить отключение всего осветительного оборудования или части его с целью экономия электроэнергии.
  2. Определять исправность системы.
  3. Контролировать расход электроэнергии.
  4. Дистанционно передавать данные о системе на панели диспетчерского управления уличным освещением.

Методы управления уличным освещением

Существует три метода управления освещением. Расскажем о них подробнее.

Ручное управление

Включение фонарей производится вручную, каждый фонарь или их группа контролируется оператором на месте.

По сути это самый старый способ. Когда фонарщик проходил по улице и зажигал каждый масляный или газовый фонарь, а потом гасил их — это и была первая и очевидная реализация метода. Во дворе своего дома освещением мы тоже управляем чаще ручным способом (про автоматизацию ниже).

Фонарщик реализует ручное управление газовой лампой (кстати, снимок современный на нем сотрудник Брестского ГорСвета)

Фонарщик реализует ручное управление газовой лампой (кстати, снимок современный на нем сотрудник Брестского ГорСвета)

На сегодня в коммунальном хозяйстве ручное управление используют только в экстренных ситуациях, или при выполнении ремонтных работ.

Дистанционное управление

Одно из первых устройств дистанционного управления уличным освещением

Когда все электроснабжение в населенном пункте или его части осуществлялось от отдельной электростанции, функции фонарщика перешли к их персоналу. Ответственное лицо, определив, что на улице достаточно стемнело или рассвело, включало или выключало рубильник, подающий напряжение на сети уличного освещения.

Читайте также:
Электрохимическая коррозия: что это такое и как защитить металл?

Автоматическое управление

Щит простейшей автоматики уличного освещения

Трансформаторная подстанция

В этом случае, отдельные участки уличного освещения, в зависимости от состояния датчиков и заложенного алгоритма, включаются и выключаются сами. Переход на автоматическую систему связан с тем, что напряжение потребителям стали подавать с помощью локальных трансформаторных подстанций преобразующих высоковольтное напряжение в стандартное.

Это создало два фактора предопределивших переход на автоматику:

  1. Устанавливать (кроме некоторых случаев) отдельные подстанции только для уличного освещения нерентабельно. Трансформаторы сейчас преобразуют напряжение для всех энергопотребителей на территории.
  2. Кроме того, для централизованного управления включением и выключением уличных фонарей, пришлось бы тянуть к каждой отдельной подстанции питающей освещение отдельную линию, что еще более бы увеличило затраты.

Поэтому в 50-е — 60-е годы была внедрена система автоматического управления освещением. Она работала по простейшему доступному на то время принципу. На каждой подстанции устанавливалась автоматика, действующая от датчиков освещенности. Стало темно — подали напряжение на фонари, стало светло — отключили.

Однако датчики подводили в некоторых случаях:

  1. при неправильной калибровке они срабатывали нечетко;
  2. из-за засветки фарами или даже полной луной фонари могли погаснуть ночью;
  3. при закрытии датчика снегом, льдом, грязью или пылью свет включался днем;
  4. в конце концов, датчик мог выйти из строя.

Раритетный датчик освещенности

Потом нашли еще один существенный минус, который проявился во времена, когда стали задумываться об экономии — зачем в ночные часы, если движения людей и транспорта нет, напрасно жечь электроэнергию. Поэтому датчики освещенности стали блокировать с реле времени. Таймер выключал или все фонари полностью или часть их во дворах и малонаселенных улицах в промежуток, например с часу до четырех ночи.

Позже появились еще и так называемые астрономические реле (на фото ниже). В них программное обеспечение по введенным координатам рассчитывает время заката и рассвета в данном месте, и на основе расчета подает сигналы на переключение. В реле также реализуется и функция выключения и включения в заданные часы.

Астрономическое реле

Совет. Если вы пользуетесь астрономическим реле, то проще всего найти координаты своего места не с помощью обычных карт, а по навигатору. Он привяжет ваше расположение с точностью до доли секунды.

Датчики освещенности остались только для контроля непредвиденного уменьшения естественной освещенности, например из-за тумана. Кажется система на основе астрономического таймера идеальный вариант (на их основе работает большинство систем уличного освещения в небольших населенных пунктах).

Но у нее все равно есть минусы:

  1. Для того чтобы перепрограммировать систему на другое время срабатывания (например на время праздников) необходимо объехать обойти все подстанции. Это отнимает много времени (знаю по своему опыту).
  2. Присутствие человека требуется и для определения неисправностей, снятия показаний с приборов учета расхода электроэнергии.

Поэтому на сегодня все больше используют автоматизированные системы управления на основе современных цифровых технологий. В них комбинируется автоматическое и ручное управление. Рассмотрим реализацию одной из типичных систем.

Автоматическая система управления

Структурная схема одного из вариантов автоматизации управления уличным освещением

Аппаратно она состоит из двух уровней:

  • Верхний — панель диспетчерского управления уличным освещением, находится на предприятии, в ответственности которого находятся осветительные сети (Горсвет или коммунальщики). Контролируется дежурным или диспетчером. На него стекается вся информация с нижнего уровня, и осуществляется изменение параметров или программ его работы.

Диспетчерский центр управления уличным освещением

  • Нижний — щит управления уличным освещением находятся на участках сетей освещения. Щиты коммутируют работу осветительных приборов и контролируют их состояние без присутствия работников.

Щит управления освещением системы АСУНО

Связь между верхним и нижним уровнями может осуществляться несколькими способами. Как правило, оборудование, поставляемое производителями поддерживает все функции. Поэтому предприятие выбирает вариант, наиболее выгодный для конкретной ситуации. Иногда в системе одновременно используют несколько каналов.

Поэтому перечислим все способы коммутации:

  1. Модемный канал — через линии обычной телефонной сети. Один наиболее дешевых способов. Недостатки только в том, что не всегда телефонная сеть находится рядом, а прокладка отдельной линии может быть затратной. Также за телефонную связь нужно вносить хоть небольшую, но все-таки плату.
  2. GSM канал — с помощью сотовой сети. Оборудование недорого, подключиться можно быстро и практически в любом месте. Недостаток — значительная оплата за пользование сетью.
  3. LAN линии — блок управления уличным освещением и аппаратура диспетчера соединяются витой парой. Этот канал не требует оплаты за связь сторонним организациям, но требует прокладки линий к каждому шкафу. Выгодно только при небольшой отдаленности оборудования верхнего и нижнего уровня.
  4. Радиоканал — как и понятно с помощью радиосвязи. Оборудование дороже, чем в других случаях, зато не требуется оплата за канал. Минус один — плохая помехозащищенность.

Возможности автоматической системы управления

Перечислим основные возможности системы, причем обратите внимание — все операции и передача данных осуществляется в режиме реального времени и с возможностью работать не с каждым щитом управления отдельно а и группировать их.

  1. включение и выключение каждого источника освещения по команде;
  2. программирование включения осветительных по времени или от состояния датчиков (освещенности и других), возможно введение почасового, календарного и сезонного графика работы;
  3. переключение фаз на линиях питания осветительных приборов, в том числе и программно — по времени, или в зависимости от параметров питания на вводе в шкаф;
  4. принудительная перезагрузка микропроцессорной системы шкафа управления.
  1. контроль состояния линий подключения освещения (есть или нет напряжение его параметры, ток, наличие короткого замыкания, перекос фаз, косинус фи);
  2. контроль состояния линий ввода (есть или нет напряжение его параметры, ток, перекос фаз, косинус фи);
  3. контроль состояния контакторов и автоматических выключателей на выходах (включен/выключен);
  4. контроль прибора учета расхода электроэнергии (показания, пики, тарифы);
  5. контроль несанкционированного доступа в шкаф (при открытии без разрешения, или взломе отправляется информация диспетчеру);
  6. состояние линий связи (уровень сигнала и т. п.);
  7. диагностика неисправностей системы;
  8. контроль возгораний, датчики сигнализируют о резком повышении температуры.
Читайте также:
Толщина линолеума с утеплителем

Система управления уличным освещением почти всегда имеет встроенный источник питания. При отключении электроснабжения, она в течении не менее чем часа остается на связи, и сообщает об изменениях параметров.

Также стоит отметить, что почти всегда дублируется сохранение данных. Информация о ситуации записывается и хранится не только у диспетчерской аппаратуры, но и в оборудовании шкафов (щитов управления на местах). Если отсутствовала связь, то можно восстановить ход событий считать через память щита управления (как говорилось выше, он энергонезависим).

Самостоятельное управление освещением

Если говорить о небольшой территории, например, такой как участок возле дома или производственная площадка небольших размеров (не более 100 х 100 метров), то там не нужны сложные системы управления уличным освещением.

Дистанционное управление тоже не обязательно (даже с помощью смартфона). Пока вы будете включать нужное приложение, то можно подойти и включить механический выключатель. На такую территорию редко устанавливается более десятка фонарей. Исключение, когда управление уличными фонарями взаимосвязано с домом или системой охраны.

Поэтому разберем, как устроить своими руками систему управления уличного освещения небольшой территории. Она, как показывает практика, может значительно уменьшить затраты на энергоснабжение.

Что нам нужно осветить

Наиболее распространено разделение на следующие группы светильников:

  1. Светильники, которые горят все темное время суток (все зависит от желания хозяев) обычно их располагают перед парадным входом.
  2. Дороги внутри территории желательно освещать только при появлении людей или техники (см. Освещение сада и дорожек своими руками). Это правило касается и участков, где возможно появления незваных гостей (с целью охраны). , декоративное освещение или праздничную иллюминацию — она должна гореть только вечером.
  3. Площадка перед въездными воротами и гаражом. Можно освещать только при приближении техники, а не людей.

Что нам для этого понадобится

Кроме проводов и арматуры, надо будет приобрести еще некоторые детали. Все не дорогостояще и не дефицитно, приведем примерные цены на них.

  • Реле времени — цена от 300 рублей.

Реле времени

  • Астрономическое реле — от 500 рублей.
  • Световое реле (сумеречный датчик) — от 500 рублей.

Световое (сумерочное) реле с выносным датчиком

  • Емкостное реле (датчик присутствия или приближения) — от 500 рублей.

Емкостное реле

Замечу, это российские цены, приобрести все можно и дешевле в интернете (не учитывая качества).

Как подключать

Все эти детали (современного исполнения) питаются от стандартной сети 220 вольт и могут коммутировать приличную нагрузку. То есть, промежуточных реле и контакторов, понижающих трансформаторов не надо, стоит только продумать защиту от перегрузок.

Схема подключения почти всегда указана на корпусе, в том числе и выводы для подачи сигнал на блокировку/деблокировку. Дополнительно назначения клемм прописывает инструкция. Даже с минимальными (но уверенными знаниями электротехники) проблем не возникнет.

Собираем схемы

Расскажем, что и как применить для каждого освещаемого объекта (территории):

  1. Перед входом — просто подключаем через астрономическое реле или реле освещения. Сбои из-за различных обстоятельств не критичны, что впрочем, справедливо и для всех остальных случаев.
  2. Пути перемещения внутри территории — тут задача сложнее. Решаем ее так: возле всех входов и выходов устанавливаем датчики присутствия, они дают сигнал на реле времени, которое должно включить освещение, на промежуток которого с запасом хватит на дорогу. Для того чтобы система не включалась днем предусматриваем ее блокировку датчиком освещения или астрономическим реле.
  3. Подсветку и иллюминацию — через астрономическое реле, включаем после заката, тушим, когда все спят. Если речь идет только об освещении на праздники, можно использовать обычный таймер (за несколько дней время заката не сильно измениться).
  4. Въезд для автомобиля — если у вас автоматические ворота, то контроллер управления ими чаще всего имеет выход для управления освещения. Если нет — лучший выход применить датчик освещенности.

Но нужно сделать, так чтобы он реагировал только на фары подъезжающего автомобиля. Для этого — на глазок крепим бленду (трубку небольшой длины и подходящего диаметра), она исключит постороннюю засветку.

Устанавливаем датчик не на щитке, а в месте, где он будет попадать под створ ваших фар при подъезде. Дополнительно можно блокировать включение освещения днем с помощью реле времени.

Вот и все что мы хотели рассказать о том, что такое система управления уличным освещением. Будем рады, если наша статья помогла вам. Живите в безопасности, но не переплачивайте за электроэнергию.

Схемы дистанционного управления наружным освещением

Схемы дистанционного управления наружным освещением

Применяемые в современных проектах схемы дистанционного управления наружным освещением (см. ниже схемы на рис. 1 – 6 ) обеспечивают:

централизованное управление освещением из одного пункта раздельно каждым объектом,

контроль положения магнитных пускателей,

местное управление освещением отдельных объектов при общем централизованном управлении,

ремонтное отключение наружного освещения с пункта питания,

возможность отключения рабочего освещения объектов контролируемого района с пульта централизованного отключения освещения,

частичное отключение рабочего освещения отдельного ряда объектов из шкафа управления.

Читайте также:
Что сначала клеить – обои или потолочный плинтус: нюансы монтажа поверх оклеенных стен

Дистанционное управление осуществляется магнитными пускателями ПМ, установленными на питающих линиях объектов наружного освещения. Управление магнитными пускателями производится со шкафов управления автоматически с помощью фотореле устройства управления наружным освещением АО. Возможно управление вручную дистанционно с помощью выключателей В в цепи управления посредством выбора режима переключателем режимов управления ПУ.

Принципиальная схема цепей управления освещением

Рис. 1. Принципиальная схема цепей управления освещением

Принципиальная схема цепей управления освещением

Рис. 2. Принципиальная схема цепей управления освещением

Централизованное отключение наружного освещения осуществляется введением в схемы управления блок-контакта реле централизованного отключения РО на пульте централизованного отключения или блок-контакта реле двойного снижения напряжения ДСН, установленного в релейных шкафах.

Место установки пультов централизованного отключения наружного освещения определяется проектом.

Объекты распределяются по группам дежурного и рабочего освещения для каждого контролируемого района при конкретном проектировании в соответствии с действующими инструкциями.

Принципиальная схема цепей управления освещением до пяти объектов: РП1, РП2 — промежуточное реле, ЛКН — лампа контроля напряжения фидеров

Рис. 3. Принципиальная схема цепей управления освещением до пяти объектов: РП1, РП2 — промежуточное реле, ЛКН — лампа контроля напряжения фидеров

ринципиальная схема цепей управления освещением до семи объектов при размещении аппаратуры управления ЯУ или ШУ в пункте управления

Рис. 4. Принципиальная схема цепей управления освещением до семи объектов при размещении аппаратуры управления ЯУ или ШУ в пункте управления

Сети дистанционного управления наружным освещением следует выполнять контрольными кабелями, прокладываемыми в земле или подвешенными на тросе по опорам ВЛ. Сети дистанционного управления рассчитываются из условия, что для надежного срабатывания магнитных пускателей потеря напряжения в сети не должна превышать 15 % в момент включения.

При применении в схемах магнитных пускателей с большими пусковыми токами, а также при больших расстояниях между пунктом управления наружным освещением и пунктами питания в цепи дистанционного управления вводится промежуточное реле. В этом случае сечение кабеля выбирается по пусковому току этого реле. В качестве шкафов питания наружного освещения рекомендуется принимать комплектные устройства управления: ящики управления и шкафы управления. Ящики и шкафы питания наружного освещения устанавливаются в абонентской части трансформаторных подстанций.

Централизация управления освещением нередко выполняется по каскадным схемам, при которых управление участками распределительных линий сети наружного освещения выполняется подключением катушки контактора второго участка в линию первого, катушки контактора третьего участка в линию второго и т. д. Число участков не должно превышать 10. При этом создается контролируемое направление каскада посредством последовательного включения участков, при котором начало первого и конец последнего участков каскада заведены в пункт управления и контроля состояния каскада.

Принципиальная схема цепей управления освещением до семи объектов при размещении аппаратуры управления ЯУ или ШУ на подстанциях

Рис. 5. Принципиальная схема цепей управления освещением до семи объектов при размещении аппаратуры управления ЯУ или ШУ на подстанциях

Принципиальная схема цепей управления освещением до 12 объектов при размещении аппаратуры управления на подстанциях

Рис. 6. Принципиальная схема цепей управления освещением до 12 объектов при размещении аппаратуры управления на подстанциях

Дистанционное управление наружным освещением должно осуществляться по световому календарю и графику включения и отключения установок для населенного пункта, по часам работы осветительных установок помесячно для населенных пунктов, находящихся на разной широте, что может быть использовано для планирования расхода электроэнергии.

Отклонения от графика включения и отключения установок, составленного для ясной погоды, из-за неблагоприятных погодных условий допускаются не более чем на 15 мин, т. е. общее суточное увеличение продолжительности работы установок 30 мин (15 мин вечером и 15 мин утром).

Время включения или отключения установок рекомендуется уточнять, используя в диспетчерских пунктах фотоэлектрические автоматические устройства типов и др., настроенные на указанный диапазон освещенности.

Фотодатчики должны устанавливаться в соответствии с инструкциями по их эксплуатации. Общим требованием является ориентировка фотодатчика на север с тем, чтобы прямые солнечные лучи не попадали на него в течение суток. Также должна исключаться подсветка фотодатчика посторонними источниками света — светильниками, прожекторами и т. д.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Дистанционное управление уличным освещением

Здравствуйте, дорогие друзья! Сегодня узнаем, что такое дистанционное управление уличным освещением, рассмотрим различные схемы питания и управления.

В любом населенном пункте на улицах есть осветительные приборы. Как правило, это мощные фонари, установленные в соответствии с требованиями инфраструктуры. Включение и выключение осветительных приборов в нужный момент времени становится возможным благодаря применению реле времени. Аналогичным образом можно автоматизировать освещение приусадебного участка и легко внести оптимизацию — в некоторых местах добавить датчики движения или присутствия, — так удастся существенно сократить потребление электроэнергии.

Шкаф управления — сердце системы автоматизации

Сердце системы автоматизации освещения — шкаф управления. Здесь установлены схемы, отвечающие за контроль нагрузок, за распределение питания, за защиту реле светильников от скачков напряжения и от коротких замыканий. Это своего рода автоматизированный пульт управления.

Оборудование шкафа управления время от времени необходимо обслуживать и обновлять, чтобы функционирование кабелей и схем было безопасным и надежным. На время регламентных работ, шкаф обесточивают, и заменяют те части, которые пришло время обновить.

Задача шкафа управления — это, главным образом, контроль срабатывания правильного реле в зависимости от текущей ситуации (в зависимости от времени суток, от условий освещенности, от состояния датчика присутствия). Кроме того, шкаф управления позволяет человеку при помощи пульта дистанционного управления оперативно регулировать интенсивность свечения фонарей во время их работы, после того как фотореле уже сработало.

Дистанционное управление уличным освещением

Дистанционное управление уличным освещением

К шкафу можно в принципе подключить что угодно. Начиная с уличных фонарей на столбах, которые будут активироваться посредством фотореле или с пульта дистанционного управления, продолжая светодиодами вдоль приусадебных тропинок, загорающимися по наступлению сумерек, заканчивая гирляндами на фасаде дома и светильником над главным входом в дом. Принципиально ограничений нет, достаточное условие — чтобы тот или иной осветительный прибор на улице попадал в поле действия шкафа и пульта.

Читайте также:
Телевизор в гостиной: 85 фото красивого размещения и лучших идей оформления телевизора

Схемы питания и управления

В схемах питания ламп в сочетании с реле традиционно применяются: магнитные или индукционные балласты. Реже — электронные балласты (поскольку искажают радиосигнал, дают неустойчивое срабатывание). Чаще всего — таймеры для управления по календарю и по времени суток (с учетом праздников и выходных). Так или иначе, можно выделить три типа приборов автоматизированного управления уличным освещением:

  • фотореле для управления по уровню освещенности
  • система с таймером
  • система на основе астротаймера

Включение и отключение осветительных приборов с опорой на уровень текущей освещенности — вот принцип работы устройств на основе только фотореле.

В теории данный подход позволяет идеально управлять освещенностью на улице в зависимости от погодных условий и от времени суток: в пасмурную погоду свет включится раньше чем в ясный день. Но на деле очень много внешних факторов оказывают влияние на такую систему, например попадание грязи на датчик или изменение температуры схемы, — так возникают погрешности в нормальной, как хотелось человеку, работе реле.

Дистанционное управление уличным освещением

Дистанционное управление уличным освещением

Срабатывание в определенное время — это принцип устройств исключительно на таймере. Не важно, какая погода, идет ли дождь или снег — утром свет ночной иллюминации будет погашен, а вечером будет включен — в соответствии с заданными пользователем параметрами настраиваемого таймера. Но как быть с тем, что световой день летом пребывает, а к зиме — убывает? В этом недостаток схем просто на таймере, нужно будет время от времени проводить корректировку.

Более гибкая система — астротаймер. Этот тип контроллера представляет собой таймер, сопряженный с программой слежения за теоретическим движением солнца по горизонту. База данных относительно динамики положения Солнца над местностью с вашими координатами загружается в контроллер, и чем более совершенна программа — тем точнее работа системы автоматизации. Пользователю останется раз в 3 года менять блок питания системы и подводить контроллеру часы.

Автоматизированное освещение приусадебного участка

Если вам необходимо автоматизировать освещение приусадебного участка, то при определенных финансовых возможностях можно проложить к каждому из осветительных приборов по отдельному кабелю со своим фотореле. Шкафы управления установить внутри дома и возле ворот. Щит будет работать так, что потребление каждого блока окажется пропорционально количеству кабельных каналов.

Дабы систему оптимизировать, один из шкафов управления ставят возле ворот, и подключают к нему приборы с фотореле и датчиком присутствия, чтобы его контроллер управлял, скажем, только освещением вдоль садовой тропинки. Второй шкаф (для дистанционного управления) устанавливают внутри дома. Схема получается проще: каналы светильников приходят на блок контроля, а управление осуществляется с пульта.

Популярны блоки со множеством опциональных возможностей, такими например, как дистанционное управление фотореле или когда со щита подаются команды, вроде «обесточить периметр». Стандартный же шкаф может иметь просто 6 каналов, из которых можно использовать не все, а сколько нужно, например 2 или 5.

В процессе налаживания системы, сначала кабели подтягивают от осветительных приборов к контрольному шкафу. Дальше можно систему совершенствовать. Первым шагом усовершенствования каждый фонарь оснащают контроллером на батарейках для дистанционного управления по радиоканалу с пульта. Другой вариант дистанционного управления — установить датчики для приема радиоволн пульта.

Дистанционное управление уличным освещением

Садовые фонари на солнечных панелях

Одно из популярнейших решений — садовые фонари на солнечных панелях. Здесь не потребуются ни кабели, ни шкафы управления, достаточно поставить датчики для пульта. Зоны освещения могут различаться по частотам управления, но вместе будут способны покрывать весь участок.

Способы дистанционного управления

Дистанционное управление освещением участка зачастую связано с обязательной установкой распределительного щита. Передачу же сигнала контроллера можно организовать различными способами, и не просто автоматизированным цифровым способом, но и:

  • вч-сигналом по кабелю к отдельному прибору с индивидуальным реле
  • путем управления со смартфона по GSM, особенно на участке большой площади
  • наконец радиосигналом

Дистанционное управление уличным освещением

Дистанционное управление уличным освещением

В любом случае, схема в иерархическом смысле строится исходя из следующего алгоритма: шит контроля группы фонарей или реле, затем шкаф управления для определенной территории, наконец основной щит для управления умной осветительной сетью.

Схемы управления освещением

В статье приведены схемы управления освещением с использованием проходных и крестовых переключателей, бистабильных реле, светорегуляторов, диммеров, фотореле, таймеров и инфракрасных датчиков движения.

Схемы управления освещением уже неоднократно рассматривалось в литературе и на страницах различных интернет-сайтов электротехнической направленности. Поэтому, здесь мы постараемся в общих чертах охватить различные существующие решения.

Простейшие схемы управления одно- или двухклавишным выключателем всем известны и, следовательно, мало кому интересны, поэтому перейдём сразу к рассмотрению схем управлением освещения из нескольких мест.

Начнём с конкретной простой ситуации – допустим, у вас в загородном доме два этажа. Вечером вы поднимаетесь по лестнице на второй этаж. Естественно, нужно включить свет на лестнице. Включаем на первом этаже. Поднимаемся на второй этаж. Теперь свет на лестнице нужно отключить.

А как это сделать, если выключатель установлен на первом этаже? Естественно, напрашивается очевидный ответ – управление светильниками должно осуществляться из двух мест – с первого и второго этажа.

Читайте также:
Фекальный насос для выгребной ямы: какой лучше и почему

На первый взгляд ничего сложного – достаточно установить на каждом этаже по выключателю, которые включены параллельно и управлять ими независимо друг от друга. Но такая схема работать по нужному нам алгоритму не будет – с её помощью можно включить свет с любого из двух выключателей, но отключить – только с того, с которого было сделано включение – т.к. один выключатель во включенном состоянии заблокирует работу другого. Следовательно, для рассмотренной ситуации с лестницей, данная схема абсолютно неприемлема.

Для реализации управлением освещением из двух мест необходимы специальные выключатели, которые называются проходными. Вообще, в данной ситуации термин «выключатель» неправильный. Это «переключатель», т.к. он имеет три контакта – один подвижный и два неподвижных. В зависимости от положения клавиши переключателя подвижный контакт замыкается либо с одним, либо с другим неподвижным контактом. Но что бы не запутаться в терминах, будем называть этот переключатель проходным выключателем.

Включив два таких выключателя по схеме, приведённой на рисунке 1, мы получим возможность управлять одним светильником (или несколькими одновременно, если они соединены параллельно) из двух точек независимо друг от друга. Подвижными (переключающими) контактом на этой схеме является контакты, выделенные синим цветом.

Управление одним светильником из двух точек

Рис.1. Управление одним светильником из двух точек.

Особенностью проходных выключателей является то, что они не имеют строгого положения клавиши. Если в обычном выключателе, как правило, включенным положением является нажатие вверх, а выключение вниз, то в проходном выключателе положение «включено-выключено» будет зависеть от положения второго выключателя. Если допустим, вы включили свет с первого выключателя, «щёлкнув» его вверх, а со второго отключили, то в следующий раз при включении света первым выключателем, его необходимо «щёлкнуть» вниз.

Помимо одиночных, существуют сдвоенные проходные выключатели. Они позволяют управлять из двух мест двумя независимыми светильниками. Это фактически два одиночных проходных выключателя в одном корпусе. Схема соединения таких выключателей, показана на рисунке 2.

Управление двумя светильниками из двух точек

Рис.2. Управление двумя светильниками из двух точек.

Но иногда ситуация требует управления не из двух, а из трёх и более мест. Тут уже одними проходными выключателями не обойтись. Схему необходимо дополнить четырёхконтактыми переключателями – так называемыми крестовыми выключателями.

Крестовой выключатель имеет четыре контакта и более сложную конструкцию, по сравнению с проходным выключателем. Он устанавливается «в середине» схемы – т.е. первый и последний выключатели в цепи освещения будут проходными, а все во всех «промежуточных» точках должны быть установлены крестовые выключатели. В качестве примера на рисунке 3 показана схема управления светильником из трёх точек.

Управление светильником из трёх точек

Рис.3. Управление светильником из трёх точек.

Схема управления с помощью проходных и крестовых выключателей является не самым оптимальным решением, когда нужно управлять освещением из трёх и более мест. Такую схему управления значительно проще организовать с помощью двустабильных , или как их по другому называют, бистабильных реле.

Данное реле представляет собой электронную схему триггера – устройства с двумя устойчивыми состояниями и управляется кратковременным импульсом, подаваемым на его вход. Это позволяет использовать для управления освещением не фиксируемые выключатели (кнопки). Все кнопки включаются параллельно друг другу, что позволяет значительно упростить схему и соответственно монтаж освещения. Обычно такое реле представляет собой стандартный 17,5 мм модуль, устанавливаемый на DIN – рейку и монтируемый в распределительном шкафу (рисунок 4)

Внешний вид двустабильного реле

Рис.4. Внешний вид двустабильного реле.

Показанное в качестве примера двустабильное реле, в зависимости от модификации, может иметь один нормально-разомкнутый контакт, два нормально-разомкнутых контакта или нормально-разомкнутый и нормально-замкнутый контакт. Такие реле могут работать как в сети 230В, так и при напряжении 24В. Схемы включения двустабильного реле показаны на рисунке 5.

Схемы включения двустабильного реле

Рис.5. Схемы включения двустабильного реле.

Для реализации схемы управления освещением на двустабильном реле наиболее удобно задействовать его нормально-разомкнутый контакт. В приведённых обеих схемах таким контактом является контакт, имеющий выходы 1-2. Количество кнопок управления может быть любым, и все они включены параллельно.

Первое нажатие на любую кнопку подаст управляющий уровень напряжения на вход А1, что вызовет включение реле, замыкание контакта и соответственно включение освещения, второе нажатие – отключение и так далее по кругу.

Преимущество данной схемы от рассмотренной выше схемы на проходных выключателях – отсутствие необходимости применения крестовых переключателей и значительно более простой монтаж системы освещения. Недостаток – применение специального двустабильного реле. Но при наличии такого реле, данная схема является наиболее оптимальной как в плане монтажа, так и последующего отыскания неисправностей.

Отдельно необходимо остановиться на таких устройствах, как светорегуляторы (диммеры). Они позволяют управлять яркостью свечения лампы. Существую регуляторы для различных типов светильников – с лампами накаливания, с люминесцентными лампами, галогенными и т.д. Для примера приведём внешний вид и схему включения дистанционно управляемого из разных точек диммера для ламп накаливания (рисунок 6).

Как видно из схемы, включение кнопок управления в этом диммере выполняется аналогично схеме управления посредством двустабильного реле – все они включены параллельно и их может быть любое количество. Для обеспечения защиты диммер включается через автоматический выключатель. Суммарная мощность ламп может составлять 600 Вт. Схема включения для люминесцентных ламп аналогична, отличие только в том, что используется другой тип регулятора.

Читайте также:
Шторы в зал: фото новинок, современные идеи

Схема включения дистанционно управляемого диммера

Рис.6. Схема включения дистанционно управляемого диммера.

Такой тип диммера монтируется в распределительном шкафу на DIN рейку. Однако в большинстве случаев в быту используют диммеры, которые устанавливаются взамен существующих выключателей. Они имеют посадочные размеры, как и стандартный выключатель. Внешний вид диммера показан на рисунке 7.

Регулировка осуществляется вращением ручки потенциометра – при вращении по часовой стрелке яркость лампы возрастает, против часовой стрелки – уменьшается. Иногда управление производится с помощью кнопок. Силовым регулирующим элементом в схеме диммера является симистор (триак).

Диммер

При замене обычных выключателей диммерами не следует забывать один очень важный нюанс – существуют диммеры, которые включаются в разрыв питания светильника, а некоторые требуют постоянно наличия питания 230В.

В первом случае никаких вопросов по замене не возникает – диммер просто включается взамен выключателя. Во втором случае необходимо в посадочную коробку привести дополнительный нулевой провод – для обеспечения полного питания 230В. Поэтому, если не производится реконструкция электропроводки, то первый способ явно предпочтительнее. Схемы включения различных типов диммеров показаны на рисунке 8.

Включение различных типов диммеров

Рис.8. Включение различных типов диммеров.

Рассмотренные выше способы управления освещением при всём их удобстве, имеют один момент, а может для кого-то и недостаток – для включения или отключения освещения необходимо подойти к выключателю. Не привязываться к выключателю и одновременно регулировать яркость позволяют электронные дистанционные выключатели. Они бывают как с управлением на инфракрасных лучах (ИК), где в качестве пульта управления применяется пульт от любой бытовой техники, так и с управлением по радиоканалу.

В качестве примера выключателя, управляемого по ИК-каналу, можно назвать широко известный выключатель «Сапфир» (рисунок 9). Он позволяет как включать/выключать свет, так и плавно регулировать яркость свечения лампы. При всех его достоинствах, в качестве недостатка необходимо отметить то, что управлять этим выключателем можно только в пределах прямой видимости, на сколько хватит «дальнобойности» пульта управления – обычно, не более восьми метров.

Внешний вид выключателя «Сапфир»

Рис.9. Внешний вид выключателя «Сапфир».

Выключатели, работающие по радиоканалу, лишены такого недостатка, как управление только в пределах прямой видимости. Радиосигнал может проходить и через различные препятствия – стены, перекрытия и т.д. До определённой степени, конечно. В таких выключателях, как правило, используют частоту 433 или 492 МГц, на которые не требуется получения разрешения в органах радионадзора. Выходная мощность у передатчиков для таких устройств не более 10мВт.

Дистанционно управляемые выключатели (как по ИК, так и по радиоканалу), могут быть как одноканальными (позволяющие управлять только одной нагрузкой), так и многоканальными. Многоканальные выключатели удобны тем, что их можно разместить, например, в распределительном шкафу и свести объекты управления в одну точку. Одноканальные выключатели размещают обычно в распределительных коробках линии освещения.

Пример реализации одноканального радиовыключателя, монтируемого в распределительную коробку, показан на рисунке 10. В обязательном порядке, как в одноканальных, так и в многоканальных выключателях предусматривается местное (ручное) управление на случай выхода из строя пульта управления.

Одноканальный радиовыключатель

Рис.10. Одноканальный радиовыключатель.

Радиоуправляемые выключатели, хотя и имеют значительно больший радиус действия, чем выключатели, построенные на инфракрасных лучах, однако и он ограничен – как правило, не более 100 метров (хотя бывают разные варианты).

Но что делать, если нужно включить освещение или любую другую нагрузку, находясь за десятки и сотни километров от управляемого объекта? А это не такая уж и бесполезная функция – например, удалённое включение освещение в загородном доме позволит создать эффект присутствия хозяев, в зимнее время включить подогрев тёплых полов, что бы к вашему приезду в доме было тепло, летом включить кондиционер и т.д.

Вот здесь на помощь и приходят системы, управляемые дистанционно по линиям сотовой связи или через Интернет. Такие устройства сейчас довольно широко представлены на рынке. Автор данной статьи в своё время так же самостоятельно разрабатывал четырёхканальный «выключатель» по GSM. Его внешний вид показан на рисунке 11.

Четырёхканальное устройство управления и контроля

Рис.11. Четырёхканальное устройство управления и контроля.

Это устройство, получившее название многофункционального устройства управления и контроля, имеет встроенный модуль GSM. Для его использования достаточно подключить к выходным каналам требуемые нагрузки и вставить активированную SIM карту.

Доступ к управлению происходит следующим образом – производится дозвон на номер установленной SIM карты, после запрограммированного числа посылок вызовов устройство подключается к линии и необходимо ввести с клавиатуры телефона установленный пароль. Если пароль неправильный, устройство отключается от линии, если правильный – можно управлять (включить или отключить) любой из четырёх нагрузок.

Данный проект является некоммерческим, вся документация о нём, в том числе и прошивка микроконтроллера, выложены в свободном доступе и любой желающий, имеющий определённые познания в области электроники может изготовить его самостоятельно.

Все приведённые выше схемы управления имеют один общий признак – они управляются по команде человека, другими словами – оператора. Но есть целый класс устройств, которые могут работать без непосредственного участия человека. К ним относятся реле управления по команде с датчика освещённости, датчика движения и по установленному ранее временному алгоритму.

Реле с датчиками освещённости (фотореле) часто используют для управления уличным освещением – при наступлении темноты они включают светильники наружного освещения. Порог срабатывания таких реле можно регулировать в зависимости от уровня освещённости. Внешний вид фотореле вместе с датчиком показан на рисунке 12. Оно содержит один управляющий контакт, который позволяет управлять светильником непосредственно с реле, или, при больших нагрузках, через дополнительное силовое реле (контактор).

Читайте также:
Фундамент под беседку своими руками

Фотореле с датчиком

Рис.12. Фотореле с датчиком.

Реле, которые управляют нагрузкой по заданному временному алгоритму, называются программируемыми таймерами. В них прописывается нужное время включения и отключения нагрузки. Иногда таймеры интегрируют вместе с фотореле.

Для чего это нужно? Допустим, нам нужно включить наружное освещение по наступлении темноты, затем с часа ночи его отключить, в четыре утра снова включить и отключить утром, когда становится светло. Для этого фотореле и таймер собирают в последовательную цепь. При наступлении темноты фотореле включит светильник, но в час ночи таймер разорвёт цепь и светильник погаснет. Затем в четыре утра таймер снова соберёт цепь – светильник включится. И наконец, когда станет светло, светильник выключит уже фотореле.

В зависимости от модификации таймера, в нём можно запрограммировать события от суток до одного года. Разновидностью таких таймеров являются астрономические реле. Как правило, эти реле тоже используют для управления наружным освещением – в качестве входной величины в него вводятся географические координаты местности, а устройство уже на основании этих сведений само рассчитывает, когда нужно включить или отключить освещение. Внешний вид некоторых типов таймеров приведён на рисунке 13.

Внешний вид некоторых типов программируемых таймеров

Рис.13. Внешний вид некоторых типов программируемых таймеров.

И в заключение, остановимся на управлении освещением с помощью инфракрасных датчиков движения. Похожие датчики применяются в охранных системах для фиксации наличия человека в охраняемой зоне. Только там датчики предназначены для того, что бы при их срабатывании охранная система отправила тревожный сигнал на пульт вневедомственной охраны.

В нашем случае срабатывание датчика должно включить освещение на определённое время. Если по прошествии этого времени активности (движения) в контролируемой зоне не наблюдается, освещение выключается. В противном случае, освещение остаётся включенным на ещё такой же временной интервал.

Использование светильников, управляемых датчиками движения очень удобно в местах общего пользования – на лестничных клетках и коридорах многоквартирных домов. Отлично подходят такие светильники и для наружного освещения, например, во дворе дома. Они позволяют не только удобно управлять освещением, но и экономить электроэнергию, что в наше время довольно актуально. Внешний вид светильника с интегрированным ИК-датчиком показан на рисунке 14.

Внешний вид светильника с ИК-датчиком

Рис.14. Внешний вид светильника с ИК-датчиком.

Конечно, в рамках одной небольшой статьи невозможно охватить все существующие современные способы управления освещением. В ней я попробовал рассмотреть наиболее традиционные и часто используемые.

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Интересные электротехнические новинки, Электричество в доме

Управление уличным освещением — принципы и устройство

Сегодня этой красотой управляет автоматика

Фонари на улице и шкаф управления уличным освещением видели все. О том, что это оборудование предназначено для комфортного и безопасного перемещения по улицам все знают. Но как работает система управления им — понятно далеко не каждому.

По таким улицам ходить не только страшно, но и опасно

Расскажем подробно о системе и оборудовании, которое в нем применяется. Кроме того, дадим практические советы, как реализовать управление уличным освещением на вашем предприятии или участке возле дома, садоводческом кооперативе или предприятии на котором вы работаете.

В помощь видео, которое раскрывает возможности подобных систем:

  • Задачи уличного освещения
  • Методы управления уличным освещением Ручное управление
  • Дистанционное управление
  • Автоматическое управление
    Возможности автоматической системы управления
    Что нам нужно осветить

Системы управления освещением

Одним из эффективных методов повышения энергоэффективности системы освещения и снижения затрат на её эксплуатацию является использование систем управления освещением. Основываясь на многолетнем опыте эксплуатации различных объектов, холдинг БЛ ГРУПП разработал собственную систему управления АСУНО «БРИЗ».
АСУНО «БРИЗ» включает в себя линейку различного оборудования и ПО, предназначенного для автоматизации систем уличного, архитектурного и промышленного освещения. — Шкафы управления освещением (ШУНО); — Регуляторы напряжения; — Автоматизированные пункты питания наружного освещения (АППНО); — Контроллеры; — Программное обеспечение.

Дополнительно НПО GALAD предоставляет услуги по проектированию объектов, шеф-монтажу и обучению персонала клиента. Ниже представлен перечень стандартного оборудования. При этом наша компания предлагает возможность разработки и изготовления оборудования по требованию клиента.

Предназначение и конструкция

Щит для рабочего типа подсветки улиц предназначен для:

  • присоединения и контроля за системой освещения;
  • защиты этой системы;
  • коммутации электрических цепей системы подсветки, которые распределены по зонам.

Обратите внимание! Каждая зона в таком устройстве располагает отдельной коммутационной группой оборудования.

Кроме этого такое оборудование имеет вводный автомат, обеспечивающий полное отключение устройства в определенных ситуациях. Из-за того, что к ЩАО могут иметь доступ не только специализированный персонал, но и обычные люди, в его устройство часто монтируется дополнительное оборудование, предотвращающие свободный доступ к токоведущим линиям. Также очень часто в конструкцию электрощитовой включаются специальные обозначения, которые содержат информацию о том, какое назначение имеется для каждой конкретной группы имеющегося оборудования.



Шкафы управления освещением (ШУНО)

Предназначены для автономного и/или удаленного включения освещения, сбора и обработки диагностической и контрольной информации, коммерческого учета электроэнергии.

ШУНО-СС.GALAD.РВ Шкаф управления освещением на базе контроллеров БРИЗ-РВ предназначен для автономного включения и отключения наружного освещения по астрономическому расписанию с возможностью синхронизации по системам ГЛОНАСС/GPS. Встроенное программное обеспечение позволяет определять время включения и отключения по координатам установки оборудования (широте и долготе).
ШУНО-СС.GALAD.ТМ Шкаф управления освещением на базе контроллера БРИЗ-ТМ (до 6 отходящих трехфазных линий, связь по GSM/GPRS или Ethernet) предназначен для дистанционного включения и отключения наружного освещения по командам диспетчера, сбора и передачи диагностической информации.
ШУНО-СС.GALAD.DMX Шкаф управления освещением на базе контроллера БРИЗ DMX. Предназначен для управления архитектурным RGBW освещением по протоколу DMX 512.
Читайте также:
Стиль этно в интерьер

Преимущества использования ШУНО: — Снижение затрат на обслуживание системы освещения за счет удаленного контроля её параметров; — Точный учет и анализ потребляемой электроэнергии; — Быстрое выявление и, как следствие, быстрое устранение аварийных ситуаций.

Базовая комплектация устройств

В своей базовой комплектации ЩУ состоят из следующих элементов:

  • автоматические выключатели, а также устройства для защитного отключения вводной группы. Данные элементы выбираются по тому, какая схема устройства была представлена по электрическому проекту. Здесь расчет нормы опирается на расчетную нагрузку;

Обратите внимание! Иногда в базовую комплектацию допускается встраиваемый прибор для коммерческого учета потребленной электроэнергии. Он монтируется между противопожарным УЗО для вводной группы и вводным автоматическим выключателем. Это оборудование размещается в верхней части электрощитовой;

  • групповые диф. автоматы и автоматические выключатели. Их выбор также делается на основании того, какая схема проекта была подготовлена. Нормы здесь зависят от нагрузки, которую имеет каждая группа. Эта группа располагается в средней части электрощитовой, ниже вводной группы, или по всей вертикали.

Опциональная часть устройства содержит такие элементы:

  • групповые контакторы;
  • элементы, предназначенные для автоматизации управления;
  • фотореле с датчиком выносного типа;

Фотореле с датчиком выносного типа

  • суточное реле и т.д.

К элементам управления относятся:

  • переключатели с подсветкой или без нее;
  • кнопки;
  • переключатели с разным количеством положений;
  • световые указатели для определения режимов работы.

Все эти детали встречаются в базовой комплектации электрощитовой. Но при желании заказчика сюда могут устанавливаться дополнительные комплектующие.

Регуляторы напряжения

Предназначены для группового управления световым потоком в линии методом снижения напряжения в сети. Являются энергосберегающим оборудованием и предназначены для управления процессом пуска, стабилизации и понижения энергопотребления светильников наружного освещения с лампами высокого давления (натриевыми или ртутными), использующих электромагнитные ПРА, и специальными LED светильниками GALAD (LED, Стандарт LED, Волна LED[e6] )

Регулятор напряжения БРИЗ.GALAD Регулятор напряжения с ручным управлением предназначен для оптимизации расхода электрической энергии, питающей осветительные системы, путем снижения напряжения питания.
Регулятор напряжения БРИЗ.GALAD.РВ Регулятор напряжения с автоматическим управлением по годовому расписанию предназначен для оптимизации расхода электрической энергии, питающей осветительные системы, путем снижения напряжения питания.

Преимущества использования Регулятора напряжения: — Экономия потребляемой электроэнергии до 35%; — Выравнивание фазного напряжения – увеличение срока службы светотехнического оборудования.

Пожарная безопасность

Наличие устойчивости оборудования к высокой температуре является важным требованием ГОСТа № 60598. Температура, которую должен выдерживать корпус светильника, составляет 850 градусов. Корпус должен состоять из негорючих материалов, то есть не поддерживать горение и не способствовать дальнейшему распространению пожара.

Освещение пожарного гидранта

Проверку устойчивости приборов проводит изготовитель оборудования в процессе производства. Важным фактором является то, чтобы при расплавлении материала прибора, его состав не оказывал влияние на возможное возгорание окружающих материалов.

Аварийное освещение выполняет ряд функций, одной из которых является автоматическое срабатывание в случае пожара, играя роль оповещения персонала. Это происходит из-за возможности оборудования получать команду от системы пожаротушения. Для таких моделей выпускается специальный пожарный сертификат.

Обратите внимание! Некоторые виды приборов не имеют возможность принимать команду от пожарной сигнализации, соответственно на них не выдаются сертификаты и они не пригодны для применения в качестве оповещения о пожаре

Автоматизированные пункты питания наружного освещения (АППНО)

Предназначены для питания и управления установками наружного освещения по отходящим трехфазным линиям. АППНО выполняет функции вводно-распределительного устройства и имеет возможность подключения регулятора напряжения, а также подсоединение шкафов управления типа ШУНО-СС.GALAD.хх и автоматизированной информационно-измерительной системы учета электроэнергии (АИИСКУЭ).

АППНО.GALAD.РВ.6.0 Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий автономное управление наружным освещением с помощью контроллера «БРИЗ-РВ» (автономное включение и отключение наружного освещения по годовому расписанию).
АППНО.GALAD.ТМ.6.0 Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий дистанционное управление наружным освещением с помощью контроллера «БРИЗ-ТМ» (включение и отключение наружного освещения по командам диспетчера, сбор и передача диагностической информации).

Преимущества использования АППНО: — Одновременное выполнение функций вводно-распределительного устройства и шкафа управления; — Полный удаленный контроль системы.

Как подсоединять

Для того чтобы подключить к щитку освещение, нужна соответствующая схема. Эта схема должна содержать четкие обозначения, чтобы подключение освещения прошло правильно. Лучше всего, если схема в процессе подключения будет всегда находиться у вас перед глазами.

Схема подключения щитка

Щиты, для распределения электрических токов устанавливаются отдельно, а потом подключаются с помощью вводных устройств к общей электрической сети. Здесь нужна схема подключения, приведенная выше. После подключения щита, электрический ток будет разводиться к конечным носителям. Весь процесс передачи электроэнергии контролируют специальные приборы. При правильном подключении щит станет полноценно выполнять свою работу, а риск неполадок будет сведен к минимуму.

Читайте также:
Советы владельцам газонов

Контроллеры

НПО GALAD предлагает различные контроллеры для автоматизации инфраструктурных сетей и процессов (освещение, водоснабжение, отопление и др.). Все контроллеры являются собственной разработкой компании. Данные контроллеры являются основным компонентом ШУНО, АППНО и регуляторов напряжения.

Контроллер управления Бриз РВ Предназначен для автономного управления наружным освещением по хранящемуся в нем астрономическому расписанию включений и выключений. Имеет в своем составе модуль Глонасс/GPS.
Контроллер управления «БРИЗ-ТМ» Предназначен для дистанционного включения и отключения наружного освещения по командам диспетчера, сбора и передачи диагностической информации (до 6 отходящих трехфазных линий, связь по GSM/GPRS или Ethernet).
Контроллер управления Бриз-DMX Предназначен для воспроизведения загруженных цветодинамических сценариев (потоков DMX-512).

Типы светильников

Не все типы светильников можно использовать при монтаже аварийного света. Так, для эвакуационной подсветки допустимо применение только ламп накаливания, как обладающими наименьшими требованиями к источнику энергии. При температуре в освещаемом помещении не менее 5 Со возможна установка люминесцентных ламп (при отсутствии стартера).

Светильники, оборудованные светодиодными лампами, допускаются к применению в лишь при условии возможности их работы в высоком интервале напряжения.

Светильники, оборудованные аккумуляторами, имеют небольшую мощность и используются при подсветке эвакуационного светового оборудования. К данным системам применяются другие требования.

Обратите внимание! Знак аварийного освещения в виде пиктограммы «А» нанесенный на светильник является отличительной особенностью от светильника рабочего освещения. Какие светильники рекомендуется применять для аварийного освещения будет зависеть от помещения, температуры, назначения световых приборов

Какие светильники рекомендуется применять для аварийного освещения будет зависеть от помещения, температуры, назначения световых приборов.

Щиты силовые (ЩС)

ЩС (Щит силовой) — это система, созданная для ввода/вывода и контроля расходуемой энергии, защищающая также от коротких замыканий и утечек тока.

Главные функция ЩС:

  • обеспечение электроприборов необходимым напряжением (320220 В).
  • разделение цепи питания на участки, предотвращая возникновение коротких замыканий и перегрузок на каждом участке.
  • предохранение кабеля от замыканий и перегрузок.

Силовые щиты применяются как на крупных промышленных объектах, так и в частных домах.

В комплектации ЩС для частных домов присутствует основной выключатель (рубильник), который, при необходимости, сможет обесточить дом. Так же присутствуют счетчик и предохранители (автоматы).

Сам щиток представляет собой металлический/пластиковый шкаф с дверью, содержащий в себе вышеперечисленное оборудование.

Его следует располагать около входа, прочно закрепив, чтобы не подвергать его силовым встряскам. Место должно быть сухим, без отопительных приборов.

Щитки для переносных осветителей

Ящик с понижающим трансформатором ЯТП

Согласно ПУЭ 7 (последнее издание) для переносных светильников, используемых в помещениях повышенной опасности, допускается применять питающее напряжение величиной не более 50-ти Вольт. Для его получения используются понижающие потенциал трансформаторы, преобразующие сетевые 220 Вольт в 12, 24, 36 или 48 Вольт.

Для обслуживания переносных осветителей выпускаются сборные щитки особой конструкции, в состав которых входят следующие узлы:

  • преобразователь напряжения;
  • автомат, используемый для защиты по входу;
  • автоматы, защищающие отходящие к потребителю линии;
  • розетка для подключения светильников переносного типа.

В некоторых моделях шкафов от вторичной обмотки трансформатора через автомат отводятся кабельные линии к стационарным светильникам, постоянно находящимся на одном месте.

Согласно ПУЭ, к опасным условиям, в которых использование переносных светильников обязательно, относятся работы, производимые в ограниченных пространствах:

  • в траншеях (при укладке кабельных линий, например);
  • в смотровых ямах и подвальных помещениях;
  • внутри резервуаров и наливных цистерн;
  • когда производитель работ находится в неудобном положении;
  • при возможности соприкосновения с элементами заземляющих устройств.

Во всех перечисленных ситуациях допустимое напряжение не должно превышать 12-ти Вольт.

Понижающий трансформатор допускается установить в сам распределительный щиток, для чего в нем предусматривается специальный ящик из серии ЯТП.

Классификация ОЩ

Металлический щиток освещения

Современные электрические щиты освещения классифицируются по ряду признаков, основными из которых являются материал корпуса и способ монтажа. Все модели ОЩ делятся на изделия, изготавливаемые из следующих материалов:

  • металл;
  • негорючий пластик.

Металлические корпуса используются в щитовых конструкциях, которые предполагается эксплуатировать на открытом воздухе. Поэтому они надежно защищены от внешних воздействий и непогоды и имеют высокий показатель IP.

Для продления срока службы типовые уличные щиты дополнительно обрабатываются специальными пропитками и покрытиями. Высокая степень защищенности позволяет устанавливать их на объектах с повышенной эксплуатационной опасностью. Их аналоги из негорючего пластика имеют привлекательный внешний вид и подходят для размещения внутри помещений.

Отличительной особенностью щитов этого типа является их пожарная безопасность, поскольку используемый при изготовлении пластик не горит.

В зависимости от способа установки щит управления освещением может иметь следующие исполнения:

  • в виде навесной конструкции;
  • изделие, встраиваемое в стену.

Навесные закрытые шкафы оптимально подходят для монтажа в заводских цехах и на других производственных объектах. Они навешиваются в удобном для размещения месте и фиксируются на стенах посредством монтажных дюбелей.

Встраиваемые щиты, устанавливаемые в коридорах и на лестничных площадках, должны оснащаться замками, ключи от которых хранятся у дежурного электрика. Большинство из них отличается привлекательным дизайном и устанавливается в местах, где вопросам эстетичности уделяется особое внимание. При нарушении общей обстановки их рекомендуется устанавливать в нишах, имеющихся в большинстве служебных комнат.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: