Улавливание и преобразование солнечной энергии

Преобразователи солнечной энергии

В настоящее время солнечная энергия используется для получения тепловой энергии путем применения различных термосистем или посредством фотохимических реакций.

Наибольшее распространение в мире получили технологии использования солнечной энергии для горячего водоснабжения и отопления. Установки и системы теплоснабжения делятся на пассивные и активные.

В пассивных системах поглощение и аккумулирование солнечной энергии осуществляется непосредственно элементами строительных конструкций.

Активные системы основаны на использовании коллекторов устройств, преобразующих солнечную энергию в тепло.

Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии и ее преобразование в теплоту и нагрев воздуха, воды или другого теплоносителя.

Различают два типа солнечных коллекторов: плоский и фокусирующий.

В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих – с концентрацией, то есть с увеличением плотности поступающего потока радиации.

Плоские солнечные коллекторы

Солнечная энергия используется в основном для производства низкопотенциального тепла для коммунально-бытового горячего водоснабжения и теплоснабжения. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30 – 90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Преобладающим видом оборудования здесь являются так называемые плоские солнечные коллекторы. Их общемировое производство составляет, по нашим оценкам, не менее 2 млн.м 2 в год, а выработка низкопотенциального тепла за счет солнечной энергии достигает 5 -10 6 Гкал.

Плоские солнечные коллекторы (рис. 1) состоят из стеклянного или пластикового покрытия (одинарного, двойного, тройного), тепловоспринимающей панели, окрашенной со стороны, обращенной к солнцу, в черный цвет, изоляции на обратной стороне и корпуса (металлического, пластикового, стеклянного, деревянного).

Плоский солнечный коллектор

Рис. 1. Плоский солнечный коллектор:

  • 1 – солнечные лучи; 2 – остекление; 3 – корпус;
  • 4 – тепловоспринимающая поверхность; 5 – теплоизоляция; 6 – уплотнитель;
  • 7 – собственное длинноволновое излучение тепловоспринимающей пластины

На рис. 2. представлена принципиальная схема водяной низкотемпературной системы солнечного отопления с солнечными коллекторами, в которой предусмотрен автоматический дренаж коллекторов при прекращении воздействия солнечной радиации.

Схема водяной низкотемпературной системы солнечного отопления с плоскими коллекторами и их автоматическим дренажем при прекращении циркуляции

Рис. 2. Схема водяной низкотемпературной системы солнечного отопления с плоскими коллекторами и их автоматическим дренажем при прекращении циркуляции:

  • 1 – солнечные плоские коллекторы; 2 — расширительный бак;
  • 3 – дополнительный теплоисточник; 4 – теплообменник; 5 – отопительные приборы; 6, 8 – циркуляционные насосы; 7 – бак-теплоаккумулятор.

Все гелиосистемы с солнечными коллекторами в средних широтах требуют устройства больших по объему баков-аккумуляторов и включения в систему дополнительного источника энергии (рис.З), что снижает экономический эффект от их применения.

II

Жидкостная двухконтурная комбинированная низкотемпературная система солнечного отопления с плоскими коллекторами, тепловым насосом и двумя жидкостными теплоаккумуляторами

Рис. 3. Жидкостная двухконтурная комбинированная низкотемпературная система солнечного отопления с плоскими коллекторами, тепловым насосом и двумя жидкостными теплоаккумуляторами:

  • 1 – солнечные коллекторы; 2 – воздухосборник; 3 – низкотемпературный жидкостный теплоаккумулятор; 4 – испаритель теплового насоса;
  • 5 – компрессор; 6 – дроссельный вентиль; 7 – высокотемпературный жидкостной теплоаккумулятор; 8 – конденсатор теплового насоса;
  • 9 – дополнительный теплоисточник; 10 – магнитный вентиль; 11 – датчик температуры; 12 – отопительные приборы; 13 — циркуляционный насос

В качестве тепловоспринимающей панели плоского солнечного коллектора можно использовать любой металлический или пластмассовый лист с каналами для теплоносителя. Изготавливаются тепловоспринимающие панели из алюминия или стали двух типов: лист-труба и штампованные панели (труба в листе). Пластмассовые панели из-за недолговечности и быстрого старения под действием солнечных лучей, а также из-за малой теплопроводности не находят широкого применения. Под действием солнечной радиации тепловоспринимающие панели разогреваются до температур, превышающих температуру окружающей среды, что ведет к возрастанию потерь тепла. Для достижения более высоких температур теплоносителя поверхность пластины покрывают спектрально-селективными слоями, активно поглощающими коротковолновое излучение солнца и снижающими ее собственное тепловое излучение в длинноволновой части спектра.

Опыт эксплуатации солнечных установок на основе солнечных коллекторов выявил ряд существенных недостатков подобных систем.

Прежде всего, это высокая стоимость коллекторов. Увеличение эффективности их работы за счет селективных покрытий, повышение прозрачности остекления, вакуумирования, а также устройства системы охлаждения оказываются экономически нерентабельными. Существенным недостатком является необходимость частой очистки стекол от пыли, что практически исключает применение коллектора в промышленных районах. При длительной эксплуатации солнечных коллекторов, особенно в зимних условиях, наблюдается частый выход их из строя из-за неравномерности расширения освещенных и затемненных участков стекла за счет нарушения целостности остекления. Отмечается также большой процент выхода из строя коллекторов при транспортировке и монтаже. Значительным недостатком работы систем с коллекторами является также неравномерность загрузки в течение года и суток.

В связи с этим наиболее целесообразно их использование в районах с высоким уровнем средней интенсивности солнечной радиации (не ниже 300 Вт/м 2 ).

В солнечном коллекторе возможно повышение температур теплоносителя вплоть до 250 – 300 °C. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

В вакуумном водонагревателе-коллекторе объем, в котором находится темная поверхность, поглощающая солнечное излучение, отделен от окружающей среды вакуумированным пространством, что позволяет практически полностью устранять потери теплоты в окружающую среду за счет теплопроводности и конвекции. Потери на излучение в значительной степени подавляются за счет применения селективного покрытия. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до температур 120 – 160 °C. Солнечный вакуумный коллектор обеспечивает сбор солнечного излучения в любую погоду, практически вне зависимости от внешней температуры. Коэффициент поглощения энергии таких коллекторов составляет порядка 98%. Изоляция в виде вакуума позволяет избежать потерь тепла.

Читайте также:
Уплотнитель для пластиковых окон: виды, характеристики и особенности замены

Благодаря высокой теплоизоляции вакуумные солнечные коллекторы работают очень эффективно при низких температурах окружающей среды. Преимущество вакуумных коллекторов перед плоскими начинает проявляться при температуре воздуха ниже 15 °C.

Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где, конденсируясь, передают тепло коллектору.

Концентраторы

Концентраторы предназначены для увеличения плотности теплового потока солнечного излучения.

Конструкция концентрирующего гелиоприемника представлена на рис. 4.

Концентрирующие гелиоприемники представляют собой сферические или параболические зеркала, параболоцилиндры, выполненные из полированного металла, в фокус которых помещают тепловоспринимающий элемент (солнечный котел), через который циркулирует теплоноситель. В качестве теплоносителя используют воду или незамерзающие жидкости. При использовании в качестве теплоносителя воды в ночные часы и в холодный период систему обязательно опорожняют для предотвращения ее замерзания.

Конструкция концентрирующего гелиоприемника - параболического концентратора

Рис. 4. Конструкция концентрирующего гелиоприемника – параболического концентратора:

  • 1 – солнечные лучи; 2 – тепловоспринимающий элемент (солнечный коллектор); 3 – зеркало; 4 – механизм привода системы слежения;
  • 5 – трубопроводы, подводящие и отводящие теплоноситель

Для обеспечения высокой эффективности процесса улавливания и преобразования солнечной радиации концентрирующий гелиоприемник должен быть постоянно направлен строго на Солнце. С этой целью гелиоприемник снабжают системой слежения, включающей датчик направления на Солнце, электронный блок преобразования сигналов, электродвигатель с редуктором для поворота конструкции гелиоприемника в двух плоскостях.

На рис.5 представлена принципиальная схема жидкостной комбинированной двухконтурной низкотемпературной системы солнечного отопления с параболоцилиндрическим концентратором и жидкостным теплоаккумулятором. В контуре гелиоприемника в качестве теплоносителя применен антифриз, а в контуре системы отопления – вода.

Жидкостная комбинированная двухконтурная низкотемпературная система солнечного отопления с параболоцилиндрическим концентратором и жидкостным теплоаккумулятором

Рис. 5. Жидкостная комбинированная двухконтурная низкотемпературная система солнечного отопления с параболоцилиндрическим концентратором и жидкостным теплоаккумулятором:

  • 1 – параболоцилиндрический концентратор; 2 – жидкостный теплоаккумулятор;
  • 3 – дополнительный теплоисточник; 4 – термометр; 5 – контур системы отопления; 6 – регулирующий вентиль; 7 – циркуляционный насос

Преимуществом систем с концентрирующими гелиоприемниками является способность выработки теплоты с температурой теплоносителя до 100 °C и даже пара. К недостаткам следует отнести высокую стоимость конструкции; необходимость постоянной очистки отражающих поверхностей от пыли; работу только в светлое время суток, что влечет потребность в аккумуляторах большого объема; большие энергозатраты на привод системы слежения за ходом Солнца, соизмеримые с вырабатываемой энергией. Эти недостатки сдерживают широкое применение активных низкотемпературных систем солнечного отопления с концентрирующими гелиоприемниками. В последнее время наиболее часто для солнечных низкотемпературных систем отопления применяют плоские гелиоприемники.

Солнечные электростанции

Все активнее идет преобразование солнечной энергии в электроэнергию. Здесь используются два метода – термодинамический и фотоэлектрический, причем последний лидирует с большим отрывом. Так, суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт. Однако пока основное количество автономных фотоэлектрических установок поступает за счет международной финансовой поддержки в развивающиеся страны, где они наиболее необходимы.

Принципиально солнечные электростанции (СЭС) могут быть двух типов: термодинамические и фотоэлектрические. Термодинамические СЭС основаны на нагревании теплоносителя солнечным излучением с помощью специальных оптических систем с дальнейшим преобразованием тепловой энергии в механическую и далее в электрическую. Фотоэлектрические станции используют эффект прямого преобразования солнечного излучения в электроэнергию, открытый в 1839 году французским физиком Беккерелем.

Преобразование солнечного излучения в тепловую энергию теплоносителя может быть осуществлено по трём принципам: применение рассредоточенных коллекторов, использование системы с центральной солнечной башней, построение солнечного коллектора с центральной трубой. Солнечные электростанции с рассредоточенными коллекторами имеют на сегодняшний день наибольшее распространение. Преобразование солнечного излучения в тепловую энергию теплоносителя осуществляется множеством сравнительно небольших концентрирующих коллекторов, каждый из которых независимо ориентируется на солнце. Концентраторы имеют зеркальную отражательную поверхность параболической формы. В фокусе концентраторов устанавливается приемное устройство, в котором солнечная энергия передаётся жидкому теплоносителю. Нагретая жидкость от всех коллекторов консолидируется, и ее тепловая энергия используется для получения механической энергии в соответствующих тепловых двигателях. В качестве теплоносителя может использоваться вода, которая под воздействием концентрированного солнечного излучения преобразуется в пар, используемый в паровой турбине. Часто теплоносителями в солнечном контуре являются различные химические вещества с высокой теплоемкостью и температурой кипения (например, натрий, диссоциированный аммиак, углеводородный оксид дифениля и др.). В последнем случае в состав СЭС входит теплообменник, предназначенный для получения водяного пара во вторичном контуре. Далее пар высокого давления поступает на лопатки турбины. Использованный пар после турбины концентрируется и возвращается в энергетический блок, где вода вновь преобразуется в пар.

В 70-е годы XX века Советским Союзом в Крыму и Соединенными Штатами в Калифорнии построены паротурбинные СЭС, устройство которых схематически показано на рис. 6.

Схема СЭС

Рис 6. Схема СЭС:

  • 1 – гелиостаты; 2 – башня; 3 – солнечный котел; 4 – теплоаккумулятор;
  • 5 – трубопровод острого пара; 6 – трубопровод питательной воды

На башне 2 установлен котел 3, на котором фокусируется солнечное излучение, собираемое с нескольких гектаров земной поверхности зеркалами-гелиостатами. Гелиостаты 1 отслеживают движение Солнца по небосводу. Зеркала каждого гелиостата площадью в несколько квадратных метров направляют солнечные лучи на стенки теплообменника котлоагрегата, в котором вырабатывается пар с температурой до 510 °C. По паропроводу 5 пар направляется в машинный зал, где электроэнергия производится в традиционном паротурбинном цикле. Установка имеет накопитель теплоты 4 -емкость объемом в несколько тыс. м 3 , заполненную щебнем, который нагревается «острым» паром в часы максимума интенсивности солнечного излучения и отдает теплоту после захода Солнца.

Читайте также:
Стиль прованс в интерьере загородного дома

Для обеспечения высокой эффективности работы солнечной электростанции зеркала гелиоконцентратора должны быть подвижными. Автоматизированная система слежения и ориентации предусматривает постоянную концентрацию солнечных лучей от отражающих зеркал на поверхности парогенератора. Следует заметить, что из-за низкой плотности солнечного излучения для солнечных электростанций требуются значительные земельные площади под систему зеркал – концентраторов. Так, например, для мощности 200 МВт необходимы площади от 9 до 13 квадратных километров.

Для паротурбинных СЭС характерны высокие капитальные затраты, главным образом из-за высокой стоимости автоматизированных зеркал-гелиостатов. Стоимость 1 киловатта установленной мощности на башенной Крымской СЭС более чем в 10 раз превышает характерную для традиционных установок. Экономичнее оказалось другое техническое решение, реализованное в США в 1985 году. Вместо дорогих стеклянных зеркал здесь используется пленка с металлическим напылением, натянутая на обручи диаметром 1,5 метра. Создавая под пленкой вакуум, придают ей параболическую форму.

Эти вогнутые зеркала фокусируют солнечное излучение на трубы, в которых нагревается и испаряется питательная вода паротурбинной установки. Таким образом, этой СЭС башня с баком-парогенератором не нужна. Стоимость одного киловатта установленной мощности снижена по сравнению с Крымской СЭС в 4 раза, себестоимость киловатт-часа произведенной энергии приблизилась к характерной для угольных станций.

Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 оС и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0, 5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4, 8* 3, 3 м. Первый плоский коллектор солнечной энергии был построен французом Ш. А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В. К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 оС.

Преобразование солнечной энергии в теплоту, работу и электричество

Солнце – гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2*1030 кг) в 333 тыс. раз превышает массу Земли, а объем в 1, 3 млн. раз больше объема Земли. Химический состав Солнца: 81, 76 % водорода, 18, 14 % гелия и 0, 1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечную энергию люди используют с древнейших времен. Еще в 212г. н. э. с помощью концентрированных солнечных лучей зажигали священный огонь у храмов. Согласно легенде Приблизительно в то же время греческий ученый Архимед при защите родного города поджег паруса римского флота.

Солнечная радиация – это неисчерпаемый возобновляемый источник экологически чистой энергии.

Верхней границы атмосферы Земли за год достигает поток солнечной энергии в количестве 5, 6*1024 Дж. Атмосфера Земли отражает 35 % этой энергии обратно в космос, а остальная энергия расходуется на нагрев земной поверхности, испарительно-осадочный цикл и образование волн в морях и океанах, воздушных и океанских течений и ветра.

Среднегодовое количество солнечной энергии, поступающей за 1 день на 1м2 поверхности Земли, колеблется от 7, 2 МДж/м2 на севере до 21, 4 МДж/м2 в пустынях и тропиках.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т. п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Известны методы термодинамического преобразования солнечной энергии в электрическую, основанные на использовании циклов тепловых двигателей, термоэлектрического и термоэмиссионного процессов, а также прямые методы фотоэлектрического, фотогальванического и фотоэмиссионного преобразований. Наибольшее практическое применение получили фотоэлектрические преобразователи и системы термодинамического преобразования с применением тепловых двигателей.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы СЭС требуется аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Читайте также:
Типовые проекты красивых загородных домов

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.

На поверхность самых больших пустынь мира общей площадью 20 млн. км2 (площадь Сахары 7 млн. км2) за год поступает около 5*1016 кВт*ч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10%, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Термодинамическое преобразование солнечного излучения

Методы термодинамического преобразования солнечной энергии в электрическую основаны на циклах тепловых двигателей. Солнечная энергия преобразовывается в электрическую на солнечных электростанциях (СЭС), которые имеют оборудование предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы СЭС требуются аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии происходит с помощью оптической системы отражателей (гелиостатов) и приемника сконцентрированной солнечной энергии, которая используется для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Возможны две схемы термодинамического преобразования солнечной энергии. В первой схеме теплоноситель нагревается в приемнике и передает тепло в аккумулятор. Рабочее тело нагревается от аккумулятора, который сглаживает изменения в поступлении солнечной энергии. Во второй схеме рабочее тело нагревается в приемнике, а зарядка аккумулятора производится путем отвода части рабочего тела.

В настоящее время в основном строятся солнечные тепловые электростанции двух типов: башенного и распределенного (модульного). В башенных СЭС используются центральный приемник с полем гелиостатов, обеспечивающим высокую концентрацию солнечного излучения (рис. 2.8).

Рис. 2.8. Схема устройства солнечной станции башенного типа

Концентраторы солнечного излучения имеют различную форму (рис. 2.9). Небольшую степень концентрации (порядка 100) можно получить при использовании отражающих поверхностей, концентрирующих энергию при любом направлении прихода солнечных лучей. В этом случае слежение за Солнцем происходит с помощью упрощенной системы управления. Такими устройствами являются параболоцилиндрические отражатели, ось которых горизонтальна или перпендикулярна плоскости движения Солнца.

Рис. 2.9. Формы концентрации солнечной энергии: а – цилиндрический параболоид; б – параболоид вращения; в – плоско-линейная линза Френеля

Управление такой установкой осуществляется в соответствии с изменениями положения Солнца на небосводе в течение дня. Средней степени концентрации (порядка 1000) можно достичь при использовании фокусирующих гелиостатов, управляемых по двум вращательным степеням свободы. Таким гелиостатом может быть зеркало в форме параболоида вращения, ось которого ориентируется на Солнце. Высокая степень концентрации осуществляется оптической системой, которая включает плоские и параболоидные концентраторы. Эта система позволяет достичь очень высоких температур. Управление системой гелиостатов осуществляется с помощью компьютера.

Сконцентрированное солнечное излучение поглощается поверхностью приемника и превращается в тепло. Для снижения потерь тепла, связанных с излучением нагретого приемника, его поверхность покрывают тонкой пленкой из селективно поглощающих материалов. Это позволяет значительно повысить КПД установки.

В качестве рабочего тела в тепловом двигателе (турбине) обычно используется водяной пар с температурой до 550 °С, который образуется в приемнике – парогенераторе. Можно также использовать воздух и другие газы, низкокипящие органические жидкости (в том числе фреоны), жидкометаллические теплоносители.

Основными недостатками башенных СЭС является высокая стоимость и большая занимаемая площадь. Так, для размещения солнечной электростанции мощностью 100 МВт требуется площадь 200 га. Башенные СЭС мощностью до 10 МВт нерентабельны. Оптимальная мощность СЭС равна 100 МВт, а высота башни 250 м [5].

В 70-х годах XX века в мире было построено несколько станций данного типа. Крупнейшей является СЭС «Солнце-1» мощностью 10 МВт (в пиковом режиме), занимающая площадь 52 га в пустыне Мохаве (шт. Калифорния). Каждый из гелиостатов имеет по 12 граней длиной 7 м. Они следят за Солнцем и концентрируют его лучи на вершине башни высотой 95 м, где расположен приемник-парогенератор. Пар с температурой 510 °С приводит в действие турбогенератор расположенный на земле. СЭС имеет тепловой аккумулятор емкостью 3785 м 3 . Часть пара используется для нагревания нефти, циркулирующей в аккумуляторе, и передающий тепло гравию. За счет запасенного тепла можно вырабатывать пар в течение

4 часов. Около десятка экспериментальных СЭС запущено в действие или строится во Франции, Японии, Германии, Испании и США.

Более перспективными являются солнечные электростанции с распределенным приемником энергии. На этих станциях концентраторы представляют собой группу параболоцилиндрических отражателей, которые вращаются вокруг одной оси и имеют трубчатые приемники, совмещенные с фокальной линией (рис. 2.10).

Рис. 2.10. Схема солнечной станции модульного типа

с параболоцилиндрическими концентраторами

Вращение вокруг одной оси существенно уменьшаем стоимость концентратора. Причем количество получаемой энергии только на 5 % ниже энергии полученной при использовании системы слежения за Солнцем с двумя осями вращения.

Так как трубчатый приемник распложен вблизи отражателя, то фокусировка солнечного излучения может производиться с меньшей точностью. Это снижает стоимость коллектора, в состав которого входят концентратор, опорные конструкции и система слежения за Солнцем.

Первая СЭС такого типа мощностью 12,5 МВт построена в 1985 г. в США в калифорнийской пустыне Мохаве. Она занимает площадь 340 га. Компьютерная система ориентирует 540 тыс. параболоцилиндрических концентраторов таким образом, чтобы они постоянно поворачивались за солнцем. Концентраторы фокусируют солнечное излучение на трубах из нержавеющей стали имеющих селективное покрытие. Внутри трубок циркулирует синтетическое масло, которое нагревается до температуры

390 °С. Для снижения теплопотерь конвекцией металлические трубки помещают внутрь стеклянных, а между ними создается вакуум. Нагретое масло поступает в теплообменник, где превращает воду в пар, который приводит в действие турбогенератор. На этой СЭС, в случае необходимости, предусмотрена выработка электроэнергии традиционными методами. В качестве топлива используется природный газ [5].

Читайте также:
Технология укладки полимерпесчаной тротуарной плитки

Солнечные электростанции могут обеспечивать дополнительную выработку электроэнергии при пиковых нагрузках. При небольшой мощности СЭС модульного типа более экономичны, чем башенные.

Солнечная энергия — огромный, неисчерпаемый и чистый ресурс

Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.

Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.

Преобразование солнечной энергии в электричество

Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.

Как работают панели солнечных батарей

Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.

В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.

Компоненты PV ячейки

Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.

Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.

беспилотные самолеты на солнечной энергии

Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.

Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.

Стоимость солнечных батарей быстро уменьшается (в 1970 году -1кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 году – 1доллар, сейчас -20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, а ежегодный объем от продаваемых батарей превышает (по мощности) 40мВт. КПД солнечных батарей, достигавший в середине 70-х годов в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% — из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16%), стоимость очень мала (не более 10% от стоимости современных солнечных батарей). В скором времени ученые предполагают, что стоимость 1кВт-ч будет равна 10 центам, что поставит солнечную энергетику на первые места в энергетической независимости многих стран.

Перовскит «удешевит» солнечную энергию

Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.

Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.

«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».

Читайте также:
Электрический плиткорез с водяным охлаждением

Солнечная энергия для ЦОД

10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.

Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.

крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)

Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.

крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт

В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей “… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД”. Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.

Интересно

Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.

Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.

В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.

ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ В ТЕПЛОТУ, РАБОТУ И ЭЛЕКТРИЧЕСТВО

Солнечная энергия может быть преобразована в теп­ловую, механическую и электрическую энергию, исполь­зована в химических и биологических процессах. Сол­нечные установки находят применение в системах отоп­ления и охлаждения жилых и общественных’ зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или мине­рализованной воды, для сушки материалов и сельскохо­зяйственных продуктов и т. п. Благодаря солнечной энер­гии осуществляется процесс фотосинтеза и рост расте­ний, происходят различные фотохимические процесы.

Известны методы термодинамического преобразова­ния солнечной энергии в электрическую, основанные на использовании циклов тепловых двигателей, термоэлек­трического и термоэмиссионного процессов, а также прямые методы фотоэлектрического, фотогальваническо – го и фотоэмиссионного преобразований. Наибольшее практическое применение получили фотоэлектрические преобразователи и системы термодинамического преоб­разования с применением тепловых двигателей.

Рассмотрим физическую сущность процессов преобразования солнечной энергии в теплоту и работу, а также состояние работ по производству электрической энергии, поскольку это наиболее полно характеризует современный уровень развития гелиотехники.

Преобразование солнечной энергии в механическую осуществля­ется в две стадии. Первая стадия включает фототермическое преоб­разование, в результате которого солнечная энергия, поглощаемая в коллекторе, нагревает теплоноситель или рабочее тело. Этот нагрев может происходить непосредственно в солнечном коллекторе — при­емнике солнечного излучения — или в теплообменнике. При этом помимо нагрева как такового для таких рабочих тел, как водяной пар и пары органических веществ (фреонов), происходит также про­цесс образования и перегрева пара. Вторая стадия осуществляется в тепловом двигателе, в котором тепловая энергия рабочего тела преобразуется в работу. В цикле теплового двигателя рабочее тело (водяной пар или пары фреонов, воздух и т. п.) получает теплоту ^1 от источника теплоты, в результате чего оно расширяется и вы­полняет работу, отдает теплоту (>2 окружающей среде и при этом сжимается с затратой работы. Полезная работа цикла равна разно­сти количеств подведенной и отведенной теплоты Ь=(>1—

Читайте также:
Чем промыть теплообменник газового котла

Наиболее эффективно преобразование теплоты в работу проис­ходит в цикле Карно, состоящем из идеальных процессов с подводом теплоты при постоянной температуре Т и отводе теплоты при по­стоянной температуре Г2 и имеющем КПД Ци,— 1—Т2/Т1. Для повы­шения этого КПД необходимо увеличивать Т и уменьшать Тг. В данном диапазоне максимальной (Т1) и минимальной (Т2) темпе­ратур эффективность цикла реальных тепловых двигателей — паро­вых и газовых турбин, паровой машины, двигателей внутреннего сгорания и др. — значительно ниже термического КПД цикла Карно, но она также повышается при увеличении средней температуры под­вода теплоты и уменьшении средней температуры отвода теплоты. Максимальные величины термического КПД при типичных значени­ях параметров рабочего тела составляют 0,48 для паросиловых установок и 0,36 для двигателей внутреннего сгорания и газотурбин­ных установок, что в 1,5—2,5 раза ниже, чем в цикле Карно.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудо^- вание, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в тепло­ту и электроэнергию. Для эффективной работы СЭС тре­буется аккумулятор теплоты и система автоматического управления. ^

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнеч­ной энергии, используемой для получения водяного па­ра или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны. Районы, в которых годовое количество осадков не превышает 250 мм, занимают около 7в части всей суши Земли. На поверхность самых больших пустынь мира общей пло­щадью 20 млн. км2 (площадь Сахары 7 млн. км2) за год поступает около 5-1016 кВт-ч солнечной энергии. При эф­фективности преобразования солнечной энергии в элект­рическую, равной 10 %, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить-современный мировой уровень энерго­потребления.

В настоящее время строятся солнечные электростан­ции в основном двух типов: СЭС башенного типа и СЭС распределенного (модульного) типа. Идея, лежащая в основе работы СЭС башенного типа (рис. 4), была вы­сказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В 1985 г. в п. Щелкино Крымской области была вве­дена в эксплуатацию первая в СССР солнечная электро­станция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каж­дый, имеющих коэффициент отражения 0,71, концентри­руют солнечную энергию на центральный приемник в ви­де открытого цилиндра, установленного на башне высо­той 89 м и служащего парогенератором. Строительство

СЭС-5 обошлось в 30 млн. руб., а удельная стоимость установленной мощности равна 6 тыс. руб/кВт.

Выполнены технико-экономические расчеты и проект­ные проработки блочных СЭС общей мощностью 200 и 320 МВт, включающих четыре блока по 50 и 80 МВт. Удельные капиталовложения составят 1500 руб/кВт.

В США израильской фирмой «Луз» в 1988 г. были построены семь и продолжалось строительство еще ше­сти СЭС мощностью 30 МВт и стоимостью 104 млн. долл. каждая, а в 1992 г. предусмотрен ввод в действие круп­ной СЭС мощностью 350 МВт,

Электростанции башенно­го типа:

I — гелиостаты; 2 — цент* ралъный приемник нэлуче – вня; 3 — оборудование

Для покрытия потребностей в электроэнергии всей Западной Европы достаточно построить в Испании се­рию СЭС на площади, занимающей 1,8 % ее территории. При этом ими будут заменены атомные электростанции.

В’ Каракалпакии предусмотрено строительство ком­бинированной солнечно-топливной электростанции об­щей электрической мощностью 300 МВт. Мощность сол­нечного блока 100 МВт, требуемая площадь 200 га, вы­сота башен 300 м. Расчетная годовая экономия топлива составляет 80 тыс. т условного топлива.

В СЭС распределенного (модульного) типа исполь­зуется большое число модулей, каждый из которых вклю­чает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концент­ратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа по­строена в США и имеет мощность 12,5 МВт.

При небольшой мощности более экономичны СЭС модульного типа. В то же время башенные СЭС мощно­стью до 10 МВт нерентабельны, их оптимальная мощ­ность равна 100 МВт, а высота башни 250 м. В СЭС мо­дульного типа обычно используются линейные концент­раторы солнечной энергии с максимальной степенью

Концентрации около 100, а в башенных СЭС использует­ся центральный приемник с полем гелиостатов, обеспе­чивающим степень концентрации в несколько тысяч. Во втором случае система слежения за Солнцем значитель­но сложнее, так как при этом требуется вращение вокруг двух осей. Управление системой осуществляется с по­мощью ЭВМ.

В качестве рабочего тела в тепловом двигателе обыч­но используется водяной пар с температурой до 550 °С, воздух и другие газы — до 1000 °С, низкокипящие орга­нические жидкости (в том числе фреоны)—до 100 °С, жидкометаллические теплоносители — до 800 °С.

В ряде стран разрабатываются гелиоэнергетические установки с использованием так называемых солнечных прудов. На озере Солтон Си (Калифорния, США) пло­щадью 932 км2 предусмотрено сооружение СЭС с мощ­ностью модуля 5 МВт, с дальнейшим развитием до 50 МВт и доведением общей мощности СЭС до 600 МВт, при этом будет использоваться 15 % всей площади озе­ра. В 1987 г. в Израиле построена СЭС мощностью 5 МВт с площадью солнечного пруда 0,25 км2, в даль­нейшем намечено построить две СЭС по 20 МВт (пло­щадь пруда 1 км2) и СЭС 50 МВт (площадь 4 км2), а затем на Мертвом море (площадь 500 км2) будет созда­но несколько СЭС мощностью по 50 МВт и до 2000 г, предусмотрено ввести в строй серию СЭС по 50—100 МВт общей мощностью 2000—3000 МВт.

Читайте также:
Установка варочной панели

СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом. Стоимость производства 1 кВт*ч электроэнергии состав­ляет 0,1 долл., что в 4,5 раза дешевле, чем на СЭС ба­шенного типа.

Главными недостатками башенных СЭС являются их высокая стоимость и большая занимаемая площадь. Так, для размещения СЭС мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт — все­го 50 га. В соответствии с прогнозом в будущем СЭС займут площадь 13 млн. км2 на суше и 18 млн. км2 в океане.

Энергия солнечной радиации может быть преобразо­вана в постоянный электрический ток посредством сол­нечных батарей — устройств, состоящих из тонких пле­
нок кремния или других полупроводниковых материалов. Преимущество фотоэлектрических преобразователей (ФЭП) обусловлено отсутствием подвижных частей, их высокой надежностью и стабильностью. При этом срок их службы практически не ограничен. Они имеют малую массу, отличаются простотой обслуживания, эффектив­ным использованием как прямой, так и рассеянной сол­нечной радиации. Модульный тип конструкции позволя­ет создавать установки практически любой мощности и далает их весьма перспективными. Недостатком ФЭП является высокая стоимость и низкий КПД (в настоящее время практически 10—12 %),

Рис. 5. Солнечный элемент (а) и модуль (б) солнечной батареи:

Я: / — кремний п-типа: 2 — кремний р-типа; 3 — пленка из диоксида кремния; 4 — электрод; б: / — пластинка из акриловой смолы; 2 —корпус; 3 — солнеч­ный элемент; 4 — электрод; 5 — воздушный зазор

Фотоэлектрический эффект возникает в солнечном элементе при его освещении светом в видимой и ближ­ней инфракрасной областях спектра. В солнечном эле­менте из полупроводникового кремния толщиной 50мкм поглощаются фотоны, и их энергия преобразуется в элек­трическую посредством р — п соединения (рис. 5).

Стоимость кремниевых элементов в США снизилась с 1970 г. по 1985 г. с 60 до 8 тыс. долл/кВт пиковой мощ­ности. Успешно ведутся работы в США, Японии, ФРГ и Франции по созданию тонкопленочных солнечных эле­ментов с удельной стоимостью 1000 долл/кВт. Ежегодный прирост сбыта солнечных батарей в мире составляет 35 % и в 1990 г. он должен достичь 500 МВт при стои­мости 3000 долл/кВт. В настоящее время 25 % мирового производства солнечных батарей приходится на Японию.

Переход на гетеросоединения типа арсенида галлия и алюминия, применение концентраторов солнечной ра­
диации с кратностью концентрации 50—100 позволяет повысить КПД с 20 до 35 %. Суммарная мощность сол­нечных ФЭП на основе аморфного кремния в 1985 г. составила 19 МВт. В США намечено строительство фо­тоэлектрической электростанции мощностью 100 МВт, причем для размещения солнечных батарей потребуется участок площадью 110 га. Ожидается, что КПД станции составит 23 %, а годовая выработка электроэнергии — 216 ГВт-ч. Для обеспечения конкурентоспособности фо­тоэлектрических станций по сравнению с ТЭС и АЭС их стоимость должна снизиться в 5—10 раз и достичь 300—■ 500 долл/кВт.

Есть все основания полагать, что для достижения этой цели потребуется не так уж много времени. Наш оптимизм базируется на новейших достижениях в обла­сти разработки высокоэффективных солнечных элемен­тов. Так, в 1989 г. фирмой «Боинг» (г. Сиэтл, США) создан двухслойный элемент, состоящий из двух полупро­водников — арсенида и антимонида галлия — с коэффи­циентом преобразования солнечной энергии в электри­ческую, равным 37 %. В обычных кремниевых элементах инфракрасное излучение не используется, в то время как в новом элементе в первом прозрачном слое (арсенид галлия) поглощается и преобразуется в электричество видимый свет, а инфракрасная часть спектра, проходя через этот слой, поглощается и преобразуется в электри­чество во втором слое: (антимонид галлия), в итоге КПД Составляет 28%+ 9% =37%, что вполне сопоставимое КПД современных тепловых и атомных электростанций. По прогнозу через 3 года эти солнечные элементы най­дут применение в космосе, а в течение 10 лет их стои­мость снизится настолько, что станет вполне экономиче­ски обоснованным их применение в наземных системах, при этом себестоимость вырабатываемой энергии соста­вит 0,1 долл/(кВт-ч).

Солнечные батареи пока используются в основном в космосе, а на Земле только для электроснабжения авто­номных потребителей мощностью до 1 кВт, питания ра­дионавигационной и маломощной радиоэлектронной ап­паратуры, привода экспериментальных электромобилей и самолетов. В 1988 г. в Австралии состоялись первые всемирные ралли солнечных автомобилей. По мере совер­шенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснаб­

Жения, т. е. отопления и горячего водоснабжения, а так­же для выработки электроэнергии для освещения и пи­тания бытовых электроприборов.

По прогнозам к 2010 г. суммарная мощность СЭС в мире должна достичь 128,5 млн. кВт, в том числе СЭС с термодинамическим преобразованием — 115 млн. кВт, с солнечными прудами — 3,5 млн. кВт и фотоэлектриче­скими установками — 10 млн. кВт. В дополнение к это­му предусматривается доведение мощности ВЭУ до 2,8 млн. кВт.

Читайте также:
Что такое стиль китч и как его воссоздать в интерьере квартиры

Себестоимость 1 кВт-ч электроэнергии в 1987 г. со­ставляла 0,68—1,37 долл. (солнечные батареи), 0,22— 0,57долл. (ВЭУ), по прогнозу в 1992 г. она снизится до 0,28—0,57 долл. (солнечные батареи), 0,07—0,12 долл. (СЭС и ВЭУ). Эти последние цифры не намного отли­чаются от аналогичных показателей для ТЭС и АЭС.

Солнечные электростанции (СЭС)

Солнечная энергетика. Солнечная электростанция. Принцип работы современных солнечных электростанций. Первые опыты использования солнечной энергии. Башенные и модульные электростанции

Солнечная энергетика

Солнечная энергетика – направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Солнечная электростанция

Солнечная электростанция – инженерное сооружение, служащее для преобразования солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Принцип работы современных солнечных электростанций

Принцип работы современных солнечных электростанций (СЭС) основан на сборе сконцентрированной солнечной энергии при помощи зеркал и отражении солнечных лучей на приемники, которые собирают солнечную энергию и преобразуют его в тепло. Эта тепловая энергия может быть использована для производства электроэнергии с помощью паровой турбины или теплового двигателя, который приводит в действие генератор.

Принцип действия солнечной электростанции

Рис.1. Принцип действия солнечной электростанции

Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.

Производство электроэнергии из солнечной энергии — тема очень актуальная и интересная для многих государств в сегодняшнее время. Малые солнечные электростанции могут обеспечить электроэнергией дома, предприятия, общественные здания и сохранят богатство глубинных недр земли. Большие солнечные энергетические системы способны вырабатывать неограниченное число электроэнергии и способствовать развитию электроэнергетической отрасли в мировом масштабе.

Фотоэлектрические элементы, названные в ученой среде как солнечные элементы, являются устройствами из полупроводниковых материалов и служат для выработки электричества. Фотоэлектрические элементы бывают разных размеров, объемов и форм. Их чаще всего объединяют между собой в фотоэлектрические модули, а модули — соединяют в фотоэлектрические батареи.

Фотоэлектрические (PV) элементы, фотомодули и устройства преобразуют солнечный свет в электрическую энергию. Понятие фотогальваники или выработки тока из солнечной энергии, можно в буквальном смысле охарактеризовать, как свет и электричество.

Впервые это понятие упоминалось примерно в 1890 году, как «photovoltaic» — фотоэлектрический (фотогальванический) и имело две составляющие: фото, происходит от греческого слова свет и напряжения, связанного с именем пионера Алессандро Вольта в области электричества. Фотоэлектрические материалы и устройства преобразующие энергию света в электрическую энергию, были открыты известным французским физиком Эдмоном Беккерелем еще в 1839 году.

Беккерель смог открыть процесс использования солнечного света для получения электрического тока при помощи твердого материала. Но потребовалось, чтобы прошло больше полувека, чтобы ученые по-настоящему смогли понять этот процесс и узнать, что фотоэлектрический или фотогальванический эффект вызывают только определенные материалы способные преобразовывать энергию света в электрическую энергию на атомном уровне.

Сегодня фотоэлектрические системы стали важной частью нашей повседневной жизни. Мини солнечные электростанции применяются для обеспечения питания у мелких приборов и приспособлений используемых в быту, таких как, калькуляторы, наручные часы или зарядное устройство для сотового телефона. Более сложные — применяются для спутников связи, водяных насосов, уличного освещения, работы бытовых приборов и машин в некоторых домах и на рабочих местах. Многие дороги и дорожные знаки, также теперь работает с помощью фотоэлектрических элементов или модулей.

Впервые на практическую возможность использования людьми огромной энергии Солнца указал основоположник теоретической космонавтики К.Э. Циолковский в 1912 году во второй части своей книги: “Исследования мировых пространств реактивными приборами”. Он писал: “Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле”.

Энергия солнца может быть использована как в земных условиях, так и в космосе. Наземные солнечные электростанции следует строить в районах расположенных как можно ближе к экватору с большим количеством солнечных дней. В настоящее время солнечную энергию экономически целесообразно использовать для горячего водоснабжения сезонных потребителей типа спортивно-оздоровительных учреждений, баз отдыха, дачных поселков, а также для обогрева открытых и закрытых плавательных бассейнов.

Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Читайте также:
Тёрка для штукатурных работ Как не ошибиться при выборе?

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 С.

Преобразование солнечной энергии в теплоту, работу и электричество

Солнце – гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2*10 30 кг) в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн. раз больше объема Земли. Химический состав Солнца: 81,76 % водорода, 18,14 % гелия и 0,1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечную энергию люди используют с древнейших времен. Еще в 212г. н.э. с помощью концентрированных солнечных лучей зажигали священный огонь у храмов. Согласно легенде Приблизительно в то же время греческий ученый Архимед при защите родного города поджег паруса римского флота.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т.п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы солнечных электростанций (СЭС) требуется аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.
На поверхность самых больших пустынь мира общей площадью 20 млн.км 2 (площадь Сахары 7 млн. км 2 ) за год поступает около 5*10 16 кВт*ч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10%, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Башенные и модульные электростанции

В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции (СЭС) башенного типа и солнечные электростанции (СЭС) распределенного (модульного) типа.

Идея, лежащая в основе работы солнечных электростанций башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В башенных солнечных электростанциях (СЭС) используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 С, воздух и другие газы – до 1000 С, низкокипящие органические жидкости (в том числе фреоны) – до 100 С, жидкометаллические теплоносители – до 800 С.

Главным недостатком башенных солнечных электростанций являются их высокая стоимость и большая занимаемая площадь. Так, для размещения солнечных электростанциях мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт – всего 50 га.
Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт, а высота башни 250м.

В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа построена в США и имеет мощность 12,5 МВт.

При небольшой мощности СЭС модульного типа более экономичны чем башенные. В солнечных электростанциях (СЭС) модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.

В соответствии с прогнозом в будущем СЭС займут площадь 13 млн.км2 на суше и 18 млн.км2 в океане.

Способы преобразования солнечной энергии и их КПД

Излучение Солнца все время несет к Земле энергию. Это, по существу, электромагнитная энергия. Спектр электромагнитного излучения Солнца лежит в широком диапазоне: от радиоволн до рентгеновских лучей. Максимум его интенсивности приходится на видимый свет, а именно — на желто-зеленую часть спектра. В целом можно сказать, что энергия солнечного излучения управляет жизнью на Земле, климатом и погодой на нашей планете — вся живая природа на Земле обязана своим существованием Солнцу.

Дело в том, что от Солнца – к верхним слоям земной атмосферы непрерывно поступает в форме излучения мощность порядка 174 петаватт (пета – 10 в 15 степени). При этом 16% поступающей энергии поглощается верхними слоями атмосферы, а 6% – отражается от нее. В зависимости от погодных условий, в средних слоях атмосферы также происходит отражение до 20%, а поглощается около 3% приходящей от Солнца энергии.

Читайте также:
Черная матовая краска по металлу: особенности выбора

Таким образом, наша атмосфера рассеивает и фильтрует значительную часть спектра, пропуская, однако, к поверхности земли немалую его долю в форме инфракрасного и немного ультрафиолетового. В результате мы можем наблюдать круговорот воды в природе, фотосинтез растений, и имеем среднюю температуру земной поверхности около 14°C.

Способы преобразования солнечной энергии и их КПД

Технология, позволяющая человечеству использовать данную энергию практически и осознанно, называется солнечной энергетикой. И такое положение не лишено здравых оснований, ведь по оценкам ученых потенциал энергии Солнца, которая может быть принята на поверхности земли и преобразована в полезную для человека форму, составляет на сегодняшний день в максимуме почти 49,9 эксаджоуль в год (экса — 10 в 18 степени), что в 10000 превосходит нынешние потребности человечества.

Даже в Германии, где климат не особо солнечный, энергия, которую можно было бы в идеале получить от Солнца, в 100 крат превзошла бы потребности всей страны. А в Австрии на 1 квадратный метр поверхности земли приходится до 1480 кВт ⋅ ч в год. И лишь 50% этой энергии принимается в стране солнечными концентраторами, осуществляющими нагрев теплоносителя в своем фокусе.

Далее давайте рассмотрим наиболее приемлемые на сегодняшний день способы преобразования солнечной энергии, и оценим их коэффициент полезного действия (КПД).

Солнечный коллектор

Солнечные коллекторы, хотя и относятся к низкотемпературным установкам, тем не менее они позволяют добывать примерно 1250 кВт ⋅ ч на квадратный метр энергии в год. Энергия получается здесь в форме тепла, пригодного для промышленного отопления и обеспечения горячего водоснабжения.

Солнечный коллектор

Практически установка преобразует энергию, даваемую видимым светом и ближним инфракрасным излучением, – в тепло, поскольку разогревается здесь теплоноситель — вода. При отсутствии забора тепла (застое) коллекторы такого плана способны нагреть воду до 200°C.

Установка имеет покрытие из специального абсорбера, хорошо поглощающего солнечное излучение, и передающего тепло теплопроводящей системе. Селективное покрытие обычно представляет собой черный никель или напыление оксида титана. Среднестатистический КПД таких установок 50%.

Параболоцилиндрическое зеркало

Установки на базе параболоцилиндрических зеркал относятся к среднетемпературным установкам. Они позволяют получать 375 кВт ⋅ ч на квадратный метр электрической и тепловой энергии в год. В фокусе такой установки располагается трубка (внутри которой теплоноситель — масло) или фотоэлектрический преобразователь. Масло в трубке разогревается здесь до 350°C и даже больше.

Параболоцилиндрическое зеркало

Одно параболоцилиндрическое зеркало, из которых набирается крупная электростанция, имеет протяженность до 50 метров. Термальная эффективность параболических концентраторов доходит до 73 % при температуре нагрева теплоносителя 350°C. Средний КПД подобных установок доходит до 20%.

Гелиостатные системы

Гелиостатные системы относятся к высокотемпературным установкам. На них получают 500 кВт ⋅ ч на квадратный метр электрической энергии в год, кроме того гелиостатные установки дают возможность получать и тепловую энергию. Здесь нагревается теплоноситель на основе натрия и газ (двухконтурная система с термической солью). Множество зеркал отражают солнечное излучение, направляя его на емкость с теплоносителем, расположенную на вершине башни. КПД таких систем достигает 20%.

Гелиостатные системы

Солнечная батарея

Солнечные батареи (солнечные фотоэлектрические панели) относятся к электроэнергетическим установкам, и позволяют получать при помощи фотоэлектрических преобразователей 250 кВт ⋅ ч электроэнергии в год. Их эффективности бывает достаточно чтобы обеспечить электричеством небольшое домашнее хозяйство в солнечном регионе, также небольшие солнечные панели в состоянии снабжать электроэнергией дорожные знаки, осветительные приборы, оросительные системы и т. д.

Солнечная батарея

Солнечные элементы, изготовленные из поли- или монокристаллических кремниевых пластин, представляют собой полупроводниковые p-n-переходы большой площади. Они преобразуют солнечный свет непосредственно в электрическую энергию с помощью с фотоэлектрического эффекта (фотоэффекта).

В настоящее время фотоэлектрические панели преобразуют большую часть спектра видимого света и около половины спектра ультрафиолетового и инфракрасного света в полезную (электрическую) энергию.

Эффективность солнечной батареи (панели) — это мера ее способности преобразовывать солнечный свет в электричество. Только у солнечного света есть определенная энергия, которая эффективно создает электричество, и большая часть его тратится впустую на отражение или поглощение материалом, из которого сделаны солнечные панели.

На сегодняшний день эффективность солнечных батарей оставляет желать лучшего, их средний КПД относительно невысок, около 10 – 15%. На их характеристики сильно влияет температура панели и интенсивность падающего на нее солнечного излучения.

Не очень большая эффективность требуют создания массивов из солнесных панелей большего размера из-за чего они, в конечном счете, имеют более высокую стоимость.

Но эта технология все время совершенствуется. Развертывание солнечных панелей в ближайшем будущем будет продолжать ускоряться под влиянием нескольких факторов. К ним относятся снижение затрат на панели из-за улучшения базовой технологии ( повышение эффективности преобразования солнченой энергии) , а также эффективности производства и масштабирования, продвижение технологии правительствами стран за счет субсидий на первоначальные установки.

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Интересные факты

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: