Тепловой расчет системы отопления — определяем нагрузку на систему и расход тепла

Расчет тепловых нагрузок на отопление, методика и формула расчета

Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах:

— Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;

— приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;

Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.

За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.

Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).

Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.

Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.

Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.

В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.

Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.

Энергетическое обследование проектируемых режимов работы системы теплоснабжения

При проектировании система теплоснабжения ЗАО «Термотрон-завод» была рассчитана на максимальные нагрузки.

Система проектировалась на 28 потребителей тепла. Особенность системы теплоснабжения в том, что часть потребителей тепла от выхода котельной до главного корпуса завода. Далее потребитель тепла — главный корпус завода, и затем остальная часть потребителей располагается за главным корпусом завода. То есть главный корпус завода является внутренним теплопотребителем и транзитом подачи тепла для последней группы потребителей тепловой нагрузки.

Читайте также:
Столы «под старину» : старинный столик из дерева, состаренная деревянная мебель из массива сосны с люминофором

Котельная проектировалась на паровые котлы ДКВР 20-13 в количестве 3 штук, работающие на природном газе, и водогрейные котлы ПТВМ-50 в количестве 2 штук.

Одним из важнейших этапов проектирования тепловых сетей являлось определение расчетных тепловых нагрузок.

Расчетный расход тепла на отопление каждого помещения можно определить двумя способами:

— из уравнения теплового баланса помещения;

— по удельной отопительной характеристике здания.

Проектные значения тепловых нагрузок производился по укрупненным показателям, исходя из объема зданий по фактуре .

Расчетный расход тепла на отопление i-го производственного помещения , кВт, определяется по формуле:

где: — коэффициент учета района строительства предприятия:

где — удельная отопительная характеристика здания, Вт/(м3.К);

— объем здания, м3;

— расчетная температура воздуха в рабочей зоне, ;

— расчетная температура наружного воздуха для расчета отопительной нагрузки, для города Брянска составляет -24.

Определение расчетного расхода тепла на отопление для помещений предприятия производилось по удельной отопительной нагрузке (табл. 1).

Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома для расчёта можно начертить приблизительно на листе

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Он должен содержать внутренние и наружные размеры каждого помещения, окон, наружных дверных проёмов. Внутренние двери остаются без внимания, поскольку на тепловые потери они не оказывают никакого влияния.

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Специальное программное обеспечение позволяет быстро рассчитать все показатели и для маленького коттеджа, и для промышленного предприятия

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп, где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Читайте также:
Химия без химии: расскажу, как легко убрать известковый налет с крана

Тепло уходит из дома не только через окна, но и через плохо утеплённые стены, пол и потолок

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Соотношение площади окон к площади пола Значение коэффициента
10% 0,8
10-19% 0,9
20% 1,0
21-29% 1,1
30% 1,2
31-39% 1,3
40% 1,4
50% 1,5

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C — 0,90;
  • -20C — 1,00;
  • -25C — 1,10;
  • -30C — 1,20;
  • -35C — 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7.

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Исходные данные известны, значит дальше всё как в школе: подставляет в формулу цифры и получаем ответ:

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Теперь можно рассчитать мощность отопительной системы:

Читайте также:
Французские двери межкомнатные – идеальный вариант для любых помещений

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Установка системы автономного отопления для частного дома или городской квартиры всегда начинается с создания проекта. Одной из главных задач, стоящих перед специалистами на этой стадии, является определение полной потребности имеющихся площадей в энергии нагретого теплоносителя для нужд отопления и, если необходимо, горячего водоснабжения.

Зачем нужен расчет тепловых нагрузок

Расчёт тепловой энергии на отопление необходим для правильного определения характеристик системы с учетом индивидуальных особенностей объекта: тип и назначение здания, количество проживающих людей, материал и конфигурация каждого помещения, географическое положение и многие другие. Вычисление размера тепловой нагрузки является отправной точкой для дальнейших расчетов параметров оборудования отопления:

Расчет тепловых нагрузок на отопление: формула укрупненной расчетной тепловой нагрузки на здание, фото и видео примеры – Теплый Дом

  • Подбор мощности котла. Это самый важный фактор, определяющий эффективность системы отопления в целом. Производительность котла должна обеспечивать бесперебойную работу всех потребителей в любых условиях, в том числе и при наиболее низких температурах (в самую холодную пятидневку). Вместе с тем при избыточной мощности котла часть вырабатываемой энергии, а следовательно, и денег хозяев будет в буквальном смысле вылетать в трубу;
  • Согласование подключения к газовой сети. Для того чтобы получить разрешение на присоединение к газотранспортной магистрали, необходимо разработать ТУ на подключение. В заявке обязательно указывается планируемый годовой расход газа и оценка суммарной тепловой мощности всех потребителей;
  • Расчет периферийного оборудования. Тип и характеристики батарей, длина и сечение труб, производительность циркуляционного насоса и многие другие параметры также определяются в результате расчета тепловых нагрузок.

Современные источники отопления дома

Электрические нагревательные приборы, к которым относятся тепловентиляторы, инфракрасные обогреватели, масляные радиаторы, тепловые пушки, «теплые полы» и другие, а также камины и печи чаще всего используют как вспомогательные источники отопления. Частный дом с системой воздушного отопления – чрезвычайная редкость.

Следует заметить, что есть общепринятые нормы удельной мощности котла в зависимости от климатических зон:

  • W = 1,5 – 2,0 кВт – в Северных районах.
  • W = 1,2 – 1,5 кВт – в Центральных районах;
  • W = 0,7 – 0,9 кВт – в Южных районах;

С помощью формулы W кот. = S*W / 10 можно рассчитать мощность котла.

Расчет системы отопления дома включает в себя расчет мощности, при проведении которого следует учитывать следующие параметры: (См. также: Расчет котла отопления)

  • S — общая площадь помещения, которое отапливается;
  • W – мощность котла (удельная) на 10 м3, которая определяется с учетом климатических особенностей региона.

Современные источники отопления дома

Совет! С целью упрощения системы расчетов можно применить среднее значение удельной мощности котла (W), которое равно единице. Следовательно, нормативная мощность котла принимается из расчета 10 кВт на 100м2 помещения, которое отапливается. Например:

1) S = 100 м2 – площадь помещения, которое отапливается;

2) W = 1,2 кВт – удельная мощность Центральных районов.

W кот. = 100*1,2/10=12 кВт.

Рисунок 2: Проектирование системы отопления

Расход тепла на отопление

1 Расход тепла на отопление.

Максимальный расход тепла на отоплениеопределим по формуле:

где a-поправочныйкоэффициент, учитывающий отклонение расчетной наружной температуры от среднейрасчетной (-30°С), a = 0,9 [1];

V-объем зданияпо наружному обмеру, м3;

qот-тепловая отопительная характеристика здания, Вт/м3к;

-расчетнаявнутренняя температура здания, °С;

-расчетнаятемпература наружного воздуха для данной местности, для Кемерово =-50°С [1].

Для АБК получим

Читайте также:
Электрическая виброплита: свойства, назначение, особенности конструкции и выбора электро инструмента

Аналогичныерасчеты максимального расхода тепла на отопление проводим для всех потребителейи результаты сводим в таблицу 1.

Рабочаятаблица расчета тепла на отопление и вентиляцию при tнар= -50°С

Наимено-вание объекта Удельный объемV,тыс м3 Темпер-атура внутри tвн, °С Удельный рас­ход Вт/м3к Расход теп­ла, МВт
qот qвен отоп-ление венти-ляция
1. 3,3 18 0,37 0,07 0,0747 0,0141
2. Столовая 1,8 16 0,41 0,81 0,0438 0,0866
3. Душевая 1,3 25 0,33 1,16 0,0290 0,102
4. Прачечная 1,8 15 0,44 0,93 0,0463 0,0979
5. Мех. цех 21 20 0,6 0,23 0,794 0,304
6. АТП 34 10 0,58 0,76 1,065 1,395
7. РСУ 19 20 0,6 0,23 0,718 0,275
8. Автобаза 46 10 0,58 0,76 1,441 1,888
4,211 4,163
Средний расход 1,833 1,812

Суммарный максимальный расход наотопление по всем потребителям – определим,просуммировав максимальные расходы тепла для каждого из потребителей (таблица1).

1.1 Средний расход.

Среднийрасход тепла на отопление определим по формуле:

где ti – средняя температуравнутреннего воздуха отапливаемых зданий, ti=24°С [2];

tот – средняя температура наружного воздухаза месяц отопительного периода со среднесуточной температурой воздуха от +8°С и менее, для Кемерово tот=-8,2°С [2];

Расход тепла на отопление

to – расчетная температура наружноговоздуха для данной местности, для Кемерово tо= -50°С [2].

В нашем случае средний расход получим исходя из суммарного максимальногорасхода тепла на отопление,то есть

2. Расход тепла на вентиляцию.

2.1 Максимальный расход.

Максимальный расход тепла на вентиляциюопределим по формуле:

где qв-удельный расход теплоты на вентиляцию, равный расходутеплоты на 1м3 вентилируемого помещения при разности 1°С между расчетной температурой воздуха внутривентилируемого помещения tвр итемпературой наружного воздуха tн, Вт/м3*к [1].

Для АБК получим

Аналогичныерасчеты максимального расхода тепла на вентиляцию проводим для всехпотребителей и результаты сводим в таблицу 1.

Суммарный максимальный расход навентиляцию – по всем потребителям определим,просуммировав максимальные расходы тепла для каждого из потребителей (таблица1).

2.2 Средний расход.

Среднийрасход тепла на вентиляцию определим по формуле:

Средний расход тепла на вентиляцию получим исходя из суммарногомаксимального расхода тепла на вентиляцию, то есть

Нормы потребления горячейводы на нужды потребителей принимаются по [2]:

АБК:-санитарная гигиена: 7 л/сут на человека на 6 часов в сутки;

Столовая: – мытьё посуды: 3 л/еденицу за 1час всмену; – санитарная гигиена: 8л/сут на человека на 3 часа в сутки;

Автобаза: – мойка автомобилей: 75 л/автомобиль на 8часов в сутки;

Приблизительные методики оценки

Точный расчет отопления помещения – это сложная инженерная задача, которая требует определенной квалификации и наличия специальных знаний. Именно поэтому ее чаще всего поручают специалистам.

Однако, как и в некоторых других случаях, существуют более простые способы, которые дают приблизительную оценку величины необходимой тепловой энергии и могут быть выполнены самостоятельно.

Можно выделить следующие методы определения тепловой нагрузки:

  • Расчёт по площади помещения . Существует мнение, что строительство жилых домов обычно производится по проектам, которые уже учитывают климатические особенности конкретного региона и предполагают использование материалов, обеспечивающих необходимый тепловой баланс. Поэтому при устройстве системы отопления с достаточной долей точности можно использовать коэффициент удельной мощности, который не зависит от конкретных особенностей здания.

Для Москвы и области этот коэффициент обычно берется равным 100–150 Вт/м 2 , а полная нагрузка вычисляется его умножением на общую площадь помещения.

Тепловая нагрузка вычисляется по формуле: Q = V*ΔT*K/860. Здесь V – объем (произведение длины, ширины и высоты помещения), ΔT – разница температур внутри и снаружи, К – коэффициент потерь энергии тепла.

Именно с помощью коэффициента К в расчет и закладываются конструктивные особенности здания. Например, для сооружений из двойной кирпичной кладки с обычной кровлей значение К берется из диапазона 1,0–1,9, а для упрощенных деревянных конструкций оно может достигать 3,0–4,0.

Читайте также:
Современные системы отопления частных домов без газа

Несмотря на простоту и доступность, указанные методы дают лишь примерную оценку тепловой нагрузки вашего дома или квартиры. Результаты, полученные с их помощью, могут отличаться от реальных как в большую, так и в меньшую сторону. Недостатки устройства маломощной системы отопления очевидны, но и сознательно закладывать необоснованный запас по мощности также нежелательно. Использование более производительного, чем требуется, оборудования приведет к его быстрому износу, перерасходу электрической энергии и топлива.

Применять приведенные выше формулы на практике рекомендуется с большой долей осторожности. Такие расчеты могут быть оправданы в самых простых случаях, например, при выборе циркуляционного насоса для имеющегося котла или для получения грубых оценок величины затрат на отопление.

Скорость теплоносителя

Затем, используя полученные значения расхода теплоносителя, необходимо для каждого участка труб перед радиаторами вычислить скорость движения воды в трубах по формуле:где V – скорость движения теплоносителя, м/с;m – расход теплоносителя через участок трубы, кг/сρ – плотность воды, кг/куб.м. можно принять равной 1000 кг/куб.м.f – площадь поперечного сечения трубы, кв.м. можно посчитать по формуле: π * r2, где r – внутренний диаметр, деленный на 2

Расчет расхода теплоносителя для системы отопления: формула по тепловой нагрузке, как рассчитать расход воды по мощности системы – Теплый Дом

Расчет тепловой нагрузки на отопление, расчетный показатель, все измерения своими руками: инструкция, фото и видео-уроки, цена

Калькулятор скорости теплоносителяm = л/с; труба мм на мм; V = м/с

Тепловые пункты ТП

Теплопункты в соответствии со СНиП * подразделяют на:

  • индивидуальные теплопункты (ИТП) — устраивают для подсоединения отопительных, вентиляционных, технологических систем и ГВС в одном здании;
  • центральные теплопункты (ЦТП) — аналогичного назначения для двух или более объектов.

В теплопунктах предусмотрена установка оборудования, запорно-регулирующей арматуры, контрольно-измерительных, управляющих приборов и автоматики, выполняющих следующие функции:

  • преобразование физического состояния теплоносителя (из парообразного в жидкое) или его свойств;
  • контроль физических характеристик рабочего тела (обязательное присутствие);
  • учет расхода теплоты (наличие обязательно), рабочего тела и количества конденсата;
  • регулировка расхода рабочей среды и ее перераспределение по теплопроводящим контурам (через раздаточные ветви в ЦТП или направление напрямую в линию ИТП);
  • защита теплосети от аварийного превышения параметров носителя;
  • наполнение и подпитывание теплопотребляющих стояков;
  • собирание, охлаждение, возвращение конденсированной жидкости в контур и контроль ее состояния;
  • аккумулирование тепла;
  • подготовка воды для систем ГВС.

ИТП размещают в каждом здании вне зависимости от присутствия ЦТП, его основная функция – присоединение объекта к теплосетям с выполнением мероприятий, не принятых в ЦТП.

Рис. 4 Параметры некоторых видов отопительных систем разного назначения по СНиП

Расчеты энергии

В первом случае перед тем, как приобрести котел того или иного вида, необходимо произвести определенный тепловой расчет, исходя из которого можно будет подобрать котел, который будет работать наиболее эффективно, и вы сможете получить бесперебойное горячее водоснабжение и хороший обогрев всего сооружения целиком.

Схема организации системы отопления двухэтажного частного дома.

Далеко не каждый котел сможет подойти, а это значит, что необходимо приобретать котел именно такой мощности, который будет работать даже при самых максимальных нагрузках, и при этом срок эксплуатации подобного оборудования не сократится

Для того чтобы добиться необходимых результатов при выборе, необходимо обращать пристальное внимание на этот аспект. Примерно то же касается и выбора оптимального оборудования для отопления помещения в целом

Правильный расчет тепловой энергии не только позволит приобрести те приборы отопления, которые прослужат долго, но и даст возможность немного сэкономить на покупке, а значит, затраты на отопление помещения тоже могут снизиться.

Читайте также:
Электроотопление частного дома своими руками: 5 схем с дешевым теплом

Что касается получения ТУ и согласования на газификацию объекта, то расчет энергии в данном случае является основополагающим фактором. Подобного рода разрешения необходимо получать тогда, когда в качестве топлива предполагается использование природного газа под котел. Чтобы получить документацию такого рода, нужно предоставить показатели годового расхода топлива и сумму мощности отопительных источников (Гкал/час).

Разумеется, что получить такую информацию можно только исходя из проведенного расчета тепловой энергии, а затем можно будет приобрести отопительный прибор, который помимо всего прочего сведет к минимуму затраты на отопление. Использование природного газа в качестве топлива под котел сегодня является одним из наиболее популярных способов на отопление помещения.

де, ч.

ТС — тепловая сеть

Расчет тепловых нагрузок на отопление: формула укрупненной расчетной тепловой нагрузки на здание, фото и видео примеры

Как рассчитать объем и расход теплоносителя в системе

Индивидуальная система отопления похожа на кровеносную систему человека. Теплоноситель циркулирует по венам дома от его сердца в виде котла. Задача – доставлять тепло в каждую точку обогрева: радиаторы, теплый пол и др.

Монтаж системы отопления требует тщательной подготовки. Вам понадобится инструмент, правильно подобранное оборудование и, конечно, верные расчеты. Полезно будет проверить работоспособность по формулам, чтобы каждый элемент системы справлялся с поставленной задачей. Это важно и при модернизации системы, например, если вы заменяете трубы, добавляете радиаторы и достраиваете новые помещения, которые нужно отапливать.

Мы расскажем про важные параметры, которые нужно учесть при проектировании отопительной системы.

Мощность системы отопления

Этот параметр нужен для определения расхода теплоносителя и подбора котла, который справится с обогревом помещения. Сначала определяемся с мощностью, чтобы использовать ее в остальных формулах. Если данный параметр вам известен, переходите к следующему пункту.

Если же вы еще не знаете мощность, то ее легко определить исходя из площади всех помещений.

На 10 кв. м приходится 1 кВт

Такой подсчет действует для капитальных построек с хорошей теплоизоляцией и высотой потолков не более 3 м.

Допустим, площадь объекта составляет 2000 кв. м.

Расчет будет следующим

2000 / 10 = 200 кВт

Объем теплоносителя

При монтаже системы отопления важно сделать не только расчет расхода теплоносителя, но и определить его объем. Для этого существует формула. Она помогает вычислить объем во всех элементах системы.

V теплоносителя = V котла + V радиаторов + V труб

  • V котла – найдете в его техническом паспорте. У настенных газовых моделей этот параметр может составлять от 3 до 7 л. У напольных, в том числе твердотопливных, он больше – до 25 л.
  • V радиаторов – тоже можно найти в техническом паспорте. Если его нет, возьмите усредненное значение в зависимости от материала: 1,5 л на секцию – для чугунных; 0,3 л на секцию – для биметаллических; 0,4 л на секцию – для алюминиевых. Сложите количество секций для каждого радиатора, а затем суммируйте все.
  • V труб – можно вычислить по упрощенному алгоритму с помощью таблицы. Для этого общую длину труб умножаем на объем одного метра трубы в соответствии с ее типоразмером.

Определить соответствие поможет таблица

Типоразмер трубы, дюйм Внутренний радиус, мм Объем на 1 м труб, л
1/2 15 0,177
3/4 20 0,314
1 25 0,491
1 1/4 32 0,804
1 1/2 40 1,257
2 50 2,467

Вычислить объем трубопровода можно, умножив объем из последней колонки на общую длину труб. Например, если длина трубопровода 50 м с использованием трубы 1/2 дюйма, то мы умножаем 50 на 0,177. Получаем 8,85 куб. м.

Читайте также:
Спальня в частном доме — красивое оформление и лучшие идеи дизайна спальни для частного дома

Важно: если в системе на разных участках трубы имеют разный диаметр, необходимо рассчитывать объем каждого участка отдельно, а затем их объем суммировать. Например, из котельной выходит труба диаметром 1 дюйм, а в комнатах используются трубы диаметром 1/2 дюйма.

sistema

На заметку: нужно определить объем бака под тепловое расширение в зависимости от используемого теплоносителя. Если в качестве теплоносителя будет использована вода, объем бака будет составлять не менее 15% от вместимости всей системы. Для антифриза этот показатель равен 20%. Стоит отметить, что объем бака может быть несколько больше расчетного числа, но ни в коем случае не меньше. Это упрощенный подход для оценки. Есть более точные формулы, для которых нужны справочные данные по физическим свойствам выбранного антифриза.

Как рассчитать потребление тепловой энергии в отопительных системах

В холодные времена года системы отопления обеспечивают как исправную работу оборудования, так и сохранение жизни и здоровья сотрудников.

Недостаточная работа системы отопления приводит к поломке оборудования и заболеваниям персонала. В то же время чрезмерное потребление тепла наносит убытки предприятию.

Поэтому, важно знать, как рассчитать потребление тепловой энергии.

Перед тем как перейти к расчёту потребления тепловой энергии, разберём основные требования к отоплению:

  • Отапливаться должны помещения, в которых находятся более 2 часов. За исключением складских помещений, где нет постоянных сотрудников;
  • Отопление должно обеспечивать температуру 18-24 °С. Такая температура считается комфортной;
  • Регулировка количества теплоты. Для этого в отопительных системах применяется. Например, в паровых системах отопления применяются регуляторы давления пара;
  • Обеспечение взрыво- и пожаробезопасности. В установленной системе отопления должно быть учтено наличие или отсутствие на предприятии взрывоопасных веществ и химических соединений;
  • Ремонтопригодность системы. Отопление должно исправно работать круглый год, а в случае поломки ― удобно ремонтироваться;
  • Желательно совмещать отопление с вентиляцией. Чтобы в помещение поступал чистый воздух и уходили неприятные запахи.

Требования к отоплению влияют на выбор отопительного оборудования. А значит, влияют и на потребление тепловой энергии, и на финальный расчёт.

Чтобы рассчитать потребление тепловой энергии на отопление, достаточно воспользоваться стандартной формулой:

Qт (кВт/час) =S *∆T *K/860, где

Qт ― необходимое количество теплоты;

V ― внутренний объём помещения, которое нужно отопить;

∆T ― разница между наружной и требуемой температурой;

K ― коэффициент потери тепла, зависит от теплоизоляции помещения;

860 ― коэффициент для получения ответа в кВт/час.

Следующим шагом является выбор подходящей системы отопления.

Не все системы отопления подходят к каждому предприятию одинаково хорошо. Нужно учитывать специфику производства.

Разберём основные виды отопительных систем и приведём примеры их использования:

Принцип работы электрического отопления прост: преобразование электрической энергии в тепловую.

Приборы электрической системы отопления обладают высоким КПД (99%), но потребляют дорогую электрическую энергию и сильно сушат воздух.

Применение: в маленьких цеховых и складских помещениях. Допустимо использовать, как дополнительное отопление.

Инфракрасное отопление работает с помощью тепловых излучателей. Излучатель состоит из трёх частей: генератора теплоты, нагревателя и теплоотдающей поверхности.

Инфракрасная система отопления не сушит воздух, но при этом потребляет дорогостоящую электроэнергию. Оборудование имеет ограничения по площади помещения.

Применение: в цеховых и складских помещениях с высокими потолками (до 500 м²)

Водяное отопление включает в себя целую отопительную систему, которая состоит из котельной, радиаторов отопления и проведённого трубопровода между ними. Регулировка давления происходит при помощи редукционного клапана на воду.

Водяное отопление дешевле, чем электрическое, но при этом обладает КПД не более 30% и требует монтажа большой отопительной системы.

Применение: цеховые и складские помещения, в нерабочее время применяется в качестве «дежурного»

Читайте также:
Чиллер-фанкойл: схема устройства и особенности работы системы охлаждения

В котёл поступает топливо, которое сжигается. Тёплый воздух нагревает воду, которая закипает и преобразуется в пар. Пар перемещается по паропроводу, за счёт чего и происходит отопление помещений.

Паровое отопление эффективнее водяного и не требует установки габаритного оборудования. Однако, пар сильно нагревается, что требует правильной теплоизоляции паропровода. К тому же пар труднее регулировать.

Применение: цеховые и складские помещения, где нет легковоспламеняющихся и взрывоопасных предметов.

Из всех систем отопления для предприятия наиболее экономичным является паровое отопление. Особенно в тех случаях, когда пар является частью технологического процесса.

Главный недостаток парового отопления ― сложность управления потоками пара. Решается эта проблема установкой редукционного узла.

Редукционный узел снижает давление поступающего пара до оптимального значения и поддерживает на таком уровне при любых перепадах, происходящих в теплообменнике.

КВиП занимается установкой редукционных узлов с сохранением рабочих параметров и стабильной работой после установки. Монтаж узла регулирования позволит приблизить потребление тепловой энергии на отопление до расчётных значений.

За подробной информацией и подбором оборудования обращайтесь к нашим специалистам любым удобным способом.

Подписывайтесь на наш Телеграм, там всегда много интересного и полезного.

Расчет максимальной тепловой нагрузки

Расчет максимальной тепловой нагрузки

Исходные данные. Расчет максимальной тепловой нагрузки

Настоящий расчет выполнен с целью определения фактической тепловой нагрузки на отопление и горячее водоснабжение нежилых помещений.

Заказчик Магазин продовольственных товаров
Адрес объекта г. Москва
Договор теплоснабжения есть
Этажность здания 17 этажей
Этаж, на котором расположены обследуемые помещения 1 этаж
Высота этажа 3,15 м.
Система отопления независимая
Тип розлива нижний
Температурный график 95/70 °С
Расчетный температурный график для этажей на которых находятся помещения 95/70 °С
ГВС Централизованное
Расчетная температура внутреннего воздуха 18 °С
Представленная техническая документация 1. Копия договора теплоснабжения
2. Копия плана помещения.
3. Копия экспликации помещений.
4. Справка о численности персонала.
1-ый этаж

Схема расположения радиаторов отопления

Схема расположения радиаторов отопления. Расчет максимальной тепловой нагрузки

Расчет максимальной тепловой нагрузки на отопление

Расчет панельных радиаторов

№ помещения № отопительного прибора на плане Фото отопительного прибора Технические характеристики отопительного прибора
Технические характеристики панельных радиаторов PURMO Plan Ventil Compact FCV 22
Температура теплоносителя, не более, град. С 110
Избыточное рабочее давление, не более, МПа (г/кв. см) 1,0
Высота H, мм 300
Длина L, мм 700, 1200, 1300
Номинальная тепловая мощность при Тгр. 75/65/20°C, Вт 656, 1124, 1312

Температурный режим отопительной системы – 95/70/18.

Для определения фактической тепловой мощности системы, для каждого отопительного прибора, установленного в помещениях определённого функционального назначения учитывается поправочный коэффициент К, определяемый как:

Где: Тнапор.н – номинальный температурный напор принятый заводом изготовителем для определения теплоотдачи отопительного прибора при номинальных условиях;

Тнапор.ф – фактический температурный напор, ºС:

Где: tвх, tвых, – температура теплоносителя на входе и выходе из отопительного прибора, tвн.в – проектная температура внутреннего воздуха, ºС;

С учётом значения температуры теплоносителя на входе и выходе из отопительного прибора, рассчитывается значение температурного напора и коэффициента К:

Тепловая мощность панельного радиатора при индивидуальной температуре в системе отопления;

где: QS – номинальная тепловая мощность панельного радиатора;

Панельные радиаторы PURMO Plan Ventil Compac FCV 22:

Q = (QS · К) ·n= (656 · 1,29) ·2 = 1692,48 (Вт) · 0,863 = 1460,61 (Ккал/ч)

Q = (QS · К) ·n= (1124 · 1,29) ·1 = 1449,96 (Вт) · 0,863 = 1251,32 (Ккал/ч)

Q = (QS · К) ·n= (1312 · 1,29) ·2 = 3384,96 (Вт) · 0,863 = 2921,22 (Ккал/ч)

где: n – количество панельных радиаторов марки PURMO Plan Ventil Compact FCV 22, шт.

Суммарная тепловая нагрузка панельных радиаторов:

Qр.от.= 1460,61 + 1251,32 + 2921,22 = 5633,15 Ккал/ч

Максимальный часовой расход на отопление в трубопроводах

Кривые для определения теплопередачи 1м вертикальных гладких труб различных диаметров
трубы Ду 20 tтр. = + 82,5 о C tв = + 18 о C
Кривые для определения теплопередачи 1м вертикальных гладких труб различных диаметров
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 56, рис. 12.2

Qпод.тр.Ду20 ´ l1 = 57,31 ´ 0,75 = 42,9825 ккал/ч (0,000043 Гкал/ч)

Qпод.тр.Ду20 = 57,31 ккал/ч – потери тепловой энергии в подающем трубопроводе на один погонный метр;

l1 = 0,75 м – длина подающего трубопровода;

Максимальный часовой расход на отопление

Qo max = Qр.от. + Qтр.= 5633,15 + 42,98 = 5676,13 ккал/ч (0,00567613 Гкал/ч).

Годовой расход за отопительный период

Qo год = Qo max´ ((ti – tm)/(ti – tо))´ 24´ Zo´ 10 -6 = 5676,13 ´ [(18 +3,1)/(18 +28)] ´ 24 ´ 214 ´ 10 -6= = 13,3722 Гкал/год, где:

tm = -3,1 °С – средняя температура наружного воздуха за расчетный период;

ti = 18 °С – расчетная температура внутреннего воздуха в помещениях;

tо = -28 °С – расчетная температура наружного воздуха;

24 час. – продолжительность работы системы отопления в сутки;

Zo = 214 сут. – продолжительность работы системы отопления за расчетный период.

Расчет тепловой нагрузки на горячее водоснабжение

Вероятность действия санитарно-технических приборов.

P = (q h hr,u x U) / (q h x N x 3600) = (1,7 x 4) / (0,2 х 2 х 3600) = 0,00472,

U = 4 человека – количество персонала;

q h = 0,2 л/с;

N = 2 – число санитарно-технических приборов с горячей водой.

Вероятность использования санитарно-технических приборов.

Phr = (3600 х P х q h ) / q h 0,hr = (3600 х 0,00472x 0,2) / 200 = 0,016992,

где:q h 0,hr = 200;

аhr = 0,207

Средний часовой расход воды.

qt = q h u x U/ 1000 x T = 10,2 x 4/ 1000 x 24 = 0,0017 м 3 /час

где: q h u = 10,2 л/час

Максимальный часовой расход воды.

qhr = 0,005 х q h 0,hr х аhr = 0,005 х 200 х 0,207 = 0,207 м 3 /час

Тепловой поток.

а) в течении среднего часа

Q h T = 1,16 х q h T х (65 – t c ) + Q ht = 1,16 х 0,0017 х (65 – 5) + 0,017748= 0,136068 кВт x 859,8 = 116,9913 ккал /ч (0,0001169913 Гкал/ч)

б) в течении часа максимального потребления

Q h hr = 1,16 х q h hr х (65 – t c ) + Q ht = 1,16 х 0,207 х (65 – 5) + 2,16108= 16,56828 кВт x 859,8 = 14245,407 ккал /ч (0,014245407 Гкал/ч)

Qh год = gum h ´ m ´ с ´ r ´ [(65 – tс з )´ Zз]´ (1+ Kт.п) ´ 10 -6 = 10,2 ´ 4 ´ 1 ´ 1 ´ [(65 – 5) ´ 365] ´ (1+ 0,3) ´ 10 -6 = 1,16158 Гкал/год

где: gum h = 10,2 л/сутки

Техническое заключение • Расчет максимальной тепловой нагрузки

В результате выполненных расчетов тепловой нагрузки на отопление и горячее водоснабжение нежилого помещения получены такие результаты:

№ п.п. Тепловые нагрузки, Гкал/ч Годовое потребление, Гкал/год
Договорные Расчетные
Средние Макси-
мальные
Дого-
ворное
Расчетное
1 2 3 4 5 6 7
1 Отопление 0,057 0,00567613 135,857 13,3722
2 ГВС 0,0029 0,000117 0,014245 22,787 1,1616
3 Вентиляция
4 Производстве-
нные нужды
Итого: 0,0599 0,000117 0,01992113 158,644 14,5338

Расчет тепловой нагрузки • Согласование в МОЭК

Список нормативно-технической и специальной литературы

Расходы тепла подсчитаны согласно и с учетом требований следующих документов:

Тепловой расчет системы отопления — определяем нагрузку на систему и расход тепла

Система отопления предназначена для создания в помещениях здания в холодный период года температурной обстановки, комфортной для человека и отвечающей гигиеническим и технологическим требованиям.

Температурная обстановка в помещении зависит от тепловой мощности системы отопления, а также от расположения обогревающих устройств, теплозащитных свойств наружных ограждений, интенсивности других источников поступления и потерь теплоты.

В жилых зданиях при определении тепловой мощности системы отопления учитывают теплопотери через ограждающие конструкции, больший из расходов тепла на нагревание наружного воздуха, поступающего в помещение вследствие инфильтрации или для компенсации нормативного воздухообмена, а также бытовые теплопоступления в размере, регламентируемом СНБ 4.02.01–03.

Расчетная тепловая мощность системы отопления жилого дома Qот определяется суммой потерь теплоты отапливаемых помещений по формуле:

(1)

где Q4 – расчетные суммарные потери теплоты отапливаемого помещения, Вт, определяемые по формуле

(2)

где ∑ Qосн – сумма основных потерь теплоты (с учетом добавочных) через ограждающие конструкции здания (наружные стены, окна, балконные двери, полы, перекрытие и крышу, наружные двери), Вт;

Qи – сумма добавочных потерь теплоты на инфильтрацию, Вт;

Qб – сумма бытовых тепловыделений, поступающих в помещения, Вт;

η1 – коэффициент, принимаемый по табл. 1 в зависимости от способа регулирования системы отопления.

Таблица 1. Значение коэффициента η1

Система отопления и способ регулирования η1
1. Электроотопление с индивидуальным регулированием 0,85
2. Водяное отопление с индивидуальными автоматическими терморегуляторами у отопительных приборов 0,80
3. Водяное отопление с местным регулированием по температуре внутреннего воздуха помещения-представителя 0,60
4. Водяное отопление с местной системой регулирования по температуре наружного воздуха («следящая система регулирования») 0,40
5. Водяное отопление без регулирования, печное отопление 0,20

Расчетный тепловой поток отопительных приборов отапливаемого помещения (Q1, Вт) следует определять по формуле:

(3)

где Q4 – то же, что в формуле (1);

Q3 – часть расчетных потерь теплоты, возмещаемых поступлением теплоты от трубопроводов, проходящих в отапливаемом помещении, Вт;

β1 – коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетных значений, принимаемый по табл. 2;

β2 – коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений, принимаемый по табл. 3.

Таблица 2. Значение коэффициента β1

Шаг номенклатурного ряда отопительных приборов, Вт β1
120 1,02
150 1,03
180 1,04
210 1,06
240 1,08
300 1,13

Для отопительных приборов помещения с номинальным тепловым потоком более 2 300 Вт следует принимать вместо коэффициента β1 коэффициент β1′ , определяемый по формуле

(4)

Шаг номенклатурного ряда отопительного прибора следует определять как произведение номинальной плотности теплового потока на площадь поверхности нагрева секции или панели.

Таблица 3. Значение коэффициента β2

Значение расчетного теплового потока отопительного прибора Q1 является основной исходной величиной для дальнейшего теплового расчета и подбора требуемого отопительного прибора.

Если значениями β1 и β2 можно предварительно задаться для большинства проектируемых типов систем водяного отопления, то значение Q3 зависит от ряда конструктивных и геометрических параметров проектируемой системы отопления (рис. 1).

Схема распределения тепловых потоков в отапливаемом помещении

Рис. 1. Схема распределения тепловых потоков в отапливаемом помещении

Однако из практики проектирования следует отметить, что при скрытой прокладке теплопроводов насосной системы отопления (в штрабах, в полу) можно принять Q3 = 0, а при открытой прокладке величина Q3 = (0,10…0,15) Q4, что позволяет задаться Q3 = 0,15 Q4, исключая, таким образом, вероятность необоснованного завышения расчетной тепловой нагрузки участка теплопровода.

Расход теплоносителя в системе, ветви или стояке системы отопления (G, кг/ч) следует определять по формуле:

(5)

где Qуч – расчетный тепловой поток, обеспечиваемый теплоносителем системы, ветви, стояка или расчетного участка, Вт;

с – удельная теплоемкость воды, равная 4,2 кДж/(кг · °С);

Δt – разность температур теплоносителя на входе и выходе из системы, ветви или стояка, °С.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: