Станки из фанеры: чертежи самодельных ЧПУ, делаем токарные станки по дереву своими руками, другие самоделки

ЧПУ из фанеры: выбор материала, общие принципы конструирования, выпиливание деталей, сборка и нанесение защитных покрытий

Здравствуйте уважаемые читатели и подписчики блога Андрея Ноака! Переработка древесины это не просто распиловка дерева, это и получение мебели и получение сложных изделий из древесины, изделий которые прошли десятки этапов обработки и стали полноценным изделием. И именно когда дело доходит до глубокой деревообработки, бывает очень сложно, а иногда и даже невозможно обойтись без ЧПУ станка. Сегодня я хочу поговорить о том, как сделать станок ЧПУ своими руками.

Введение

ЧПУ кроме дерева может пригодиться в обработке металла, пластика, оргстекла, алюминия, комбинированных материалов. Такой станок будет называться фрезерно гравировальный. Можно также такой станок использовать и для лазерного выжигания по дереву, все будет зависеть от насадки которая будет использоваться для обработки.

Отличие же в обработке древесины и металла, заключается в жесткости корпуса, надежности элементов и тонкостях технологии обработки элементов.

Ориентировочная стоимость станка для обработки дерева составит 35 — 40 тысяч рублей. По большому счету сборка машины сводится к подбору и покупке комплектующих и затем их сборке на раме.

Заказ комплектующих популярней всего сегодня в Китае, но возможно также заказать их и у нас в специализированных магазинах или интернет ресурсах. Ниже смотрите фото самодельного станка ЧПУ.

Станок ЧПУ фото

С чем стоит определиться перед изготовлением ЧПУ:

  1. Материалы которые планируется обрабатывать;
  2. Габариты изделий для обработки (высота, ширина и длина будущих изделий). Определяются размеры машины по осям X, Y, Z. Стоит не забывать, что эти размеры должны обозначать рабочее пространство станка;
  3. Точность последующей обработки изделий (параметр зависит от точности сборки корпуса машины и соответственно от материала корпуса).

Сборка

На этой стадии тонкостей минимум:

  • Клей ПВА наносится на поверхность соединяемых деталей ватной палочкой или кисточкой (в зависимости от площади склеивания), после чего детали совмещаются и прижимаются друг к другу с максимальным безопасным для их целостности усилием. Желательно зафиксировать их под давлением до полного высыхания клея (около суток);
  • Использовать эпоксидный клей нужно аналогичным образом. Уделите особое внимание его тщательному перемешиванию с отвердителем и соотношению отвердителя и смолы. В общем случае лучше добавить немного больше рекомендованного количества отвердителя: это сделает полимеризацию смолы более быстрой.

Следы выдавившегося клея лучше удалить с поверхности деталей сразу: после его высыхания сделать окрестности шва гладкими будет неизмеримо труднее.

На фото – собранный станок.

Необходимые материалы

Итак для изготовления нам понадобятся следующие агрегаты:

  • Материал для изготовления корпуса. Можно использовать древесные плиты, такие как МДФ, ДСП, из древесных плит оптимально я бы рекомендовал применять фанеру, так как она наиболее прочная и жесткая. Если же хотите еще надежней то придется сделать конструкцию из металла;
  • Шпиндель. Для обработки древесины подойдет мощностью 1,3 — 2 КВт. Если желаете не остужать станок каждые 15 минут работы, то шпиндель нужно устанавливать с водяным охлаждением;
  • Частотник, он же частотный преобразователь, он же инвертор. Подбирается такой же мощностью как и мощность шпинделя;
  • Управляющая плата;
  • Шаговые двигатели — 3 штуки, один будет передвигать нашу конструкцию по оси Y, другой по оси X, третий по оси Z.
  • Кабель канал для защиты кабеля от повреждений и поломок, так как оборудование много будет двигаться;
  • Кабель 15 — 20 метров, лучше просчитать все на чертеже;
  • Цанга для шпинделя — по другому патрон для фрезы;
  • Шланг для охлаждения;
  • Подшипники;
  • Мягкая муфта для передачи плавного хода и компенсации соосности шагового двигателя;
  • Конечно же фрезы для обработки древесины;
  • Шурупы и болты;
  • Водяная помпа.

Раскрой листовых пластиков

Современная химическая промышленность выпускает листовые пластики для любых целей и задач. Бесцветные прозрачные или окрашенные в массе, вязкие ударопрочные или облегченные вспененные. Благодаря своим уникальным свойствам и широкому ассортименту форматов и толщин они стали незаменимы в изготовлении наружной и интерьерной рекламы, торгового оборудования, строительстве, производстве мебели и других отраслях. Листовые пластики, которые мы раскраиваем чаще всего — оргстекло/акрил, полистирол, ПВХ, ПЭТ, монолитный и сотовый поликарбонат. Ниже указана стоимость раскроя за 1 метр погонный.

Цены на раскрой оргстекла/акрила

Толщина, мм: Стоимость раскроя, руб/мп
до 500 до 1000 до 3000 до 5000
1-2 36 29 24 18
3-4 40 31 25 19
5-6 47 38 31 23
8-12 61 56 43 30
15 77 73 55 38
20-25 94 90 68 47
: +7
|
[email protected]
Заказать

Инструменты которые вам понадобятся

Для фрезерного ЧПУ нужны будут следующие инструменты:

  1. Сварочный аппарат для изготовления металлического корпуса. Преимуществом пользуются сварка — автомат;
  2. Необходимо будет выточить шпильки, возможно еще какие то токарные работы. Поэтому в идеале нужно было бы иметь доступ к токарному станку для выполнения работ по изготовлению комплектующих;
  3. Болгарка или ножовка по металлу;
  4. Отвертка;
  5. Молоток;
  6. Паяльник;
  7. Ножницы;
  8. Плоскогубцы и пассатижи;
  9. Изолента;
  10. Супер клей;
  11. Фумлента и герметик;
  12. Ключи для сборки.

Выпиливание деталей

Как и чем можно выпилить фанерные детали станка? При толщине 4 мм выпиливать придется своими руками, с помощью ручного лобзика с натяжной пилкой. Использование инструмента со значительным размером зубьев гарантированно украсит края заготовок поднятой щепой.

Совет: уменьшить количество задиров поможет скотч, наклеенный поверх заготовки.

Материал толщиной от 6 миллиметров можно пилить электролобзиком или (при простой форме детали с преобладанием прямых линий) ручной дисковой пилой.

Как и в любом другом деле, здесь есть свои тонкости:

  • Для лобзика используется пилка по металлу с минимальным размером зубьев. Они делают шансы задрать щепу по краям минимальными;
  • И пила, и лобзик для деревянных изделий ведутся вдоль линии реза с минимальной скоростью. Чем выше скорость перемещения инструмента, тем грубее края реза.
Читайте также:
Стиль этно в интерьер

Читать также: Кондуктор для точного сверления

Мелкие детали желательно вырезать с небольшим (0,5-1 мм) запасом по размеру и доводить напильником, так меньше шансов промахнуться с размером. Обрабатывать края с помощью напильника необходимо, зажав деталь в тиски (деревянные или металлические с фанерными прокладками) на уровне линии отреза.

Готовая деталь шлифуется не только по кромке, но и по плоскости.

Чертеж чпу станка из фанеры

Особое внимание стоит уделить поверхности рабочего стола.

Пошаговая инструкция

Для того чтобы понять с чего начать, давайте будем ориентироваться на принципиальную схему ЧПУ.

Итак, сборка готового станка производится в следующей последовательности:

  • Создание чертежей, с учетом прокладки и подключения электрооборудования. Можно начертить вручную, но я бы рекомендовал такие программы как Компас, Автокад или Визио. В них легче будет подправить чертеж, а в Визио даже имеются сразу готовые библиотеки по электрооборудование;
  • Следующий шаг — заказ комплектующих;
  • После поступления комплектующих можно приступить к монтажу станины. Почему после поступления? Да для того чтобы сделать станину с учетом уже пришедших комплектующих;
  • Монтаж шпинделя;
  • Монтаж системы водоохлаждения. При данной операции скорей всего придется использовать фумленту и обычный автомобильный герметик, для того чтобы конструкция была надежней и не протекала;
  • Подключение электропроводки, установка кнопки аварийной остановки;
  • Подключение управляющей платы (она же контроллер). В качестве такой платы можно использовать — KY-2012 — 5 Axis CNC Breakout Board for Stepper Motor Driver with DB25 Cable. Найти такую будет не сложно в просторах интернета. Также часто можно встретить самодельные станки на базе arduino;
  • Установка программного обеспечения и загрузка чертежей;
  • Настройка станка или так называемая «пуско наладка».

Чертежи

Как я уже выше говорил, при создании чертежей необходимо прорисовывать все тонкости от размеров до электропроводки. Это позволит уменьшить число ошибок в проектировании станка.

Изготавливаем каркас

Как я уже говорил каркас можно сделать как из фанеры, так и из металла. Можно комбинировать применение этих материалов. Ниже выкидываю чертеж каркаса.

Чертеж станка ЧПУ

Не забываем о жесткости конструкции и ее геометрии. Очень важно оставить регулировки для более тонкой настройки станка:

  1. По высоте машины как на видео;
  2. По осям Х и У.

Видео вам в помощь, чтобы не сделать ошибок:

Монтаж шпинделя

Устанавливаем шпиндель только после полного монтажа каркаса. При монтаже необходимо оставить на шпинделе возможность регулировки по высоте и вертикали. Иначе говоря, если шпиндель будет установлен не вертикально, нужна регулировка, которая бы задала нужный угол.

Ошибки и недочеты с которыми можно столкнуться

В процессе сборки машины можно столкнуться с рядом проблем, поэтому рекомендую прежде чем приступать к заказу и понимать что нужно искать, определиться с габаритами станка, габаритами изделий которые вы будете обрабатывать. Итак ошибка номер один — не создается чертеж станка с мельчайшими деталями, от каждого винтика, до каждого провода.

Следующей ошибкой является неправильная подборка шпинделя и частотника, поэтому будьте внимательны.

Еще одна частая ошибка — шаговый двигатель имеет часто не очень распространенное питание, и для него просто необходимо подбирать индивидуальный блок питания. Поэтому сравнивайте имеющееся у вас питание с напряжением для шагового двигателя.

Ну и конечно ошибки возникающие по причине недостатка опыта, тут можно посоветовать тщательней продумывать чертеж и руководствоваться пословицей «Дорогу осилит идущий».
Не забывайте делиться статьями в социальных сетях. Удачи и до новых встреч, с вами был Андрей Ноак!

Что такое 3D фрезерный станок для фанеры

Для выполнения сложного раскроя, особенно при изготовлении двух и более одинаковых деталей, требуется высочайшая точность обработки заготовки. Гарантированно сделать это без потери качества позволяет, если купить фрезерный станок для резки фанеры с ЧПУ.

фрезеровка стола и ресепшн на чпу станке

Он представляет автоматический комплекс, который обрабатывает заготовку фрезой разных типов. Замена производится с учётом технологических требований.

фрезерный станок чпу для фанеры wattsan m1 2030

Головка может комплектоваться различными типами фрез:

  • цилиндрическими – для обработки открытых поверхностей;
  • моделями концевыми – позволяют работать с уступами, пазами и различными участками внутренних поверхностей;
  • фасонными – используются при выполнении сложнопрофильных канавок;
  • торцевыми – финишная обработка.

Станки любой, даже малой мощности, способны выполнять раскрой фанеры, древесины, гравировку и 3D со скоростью до 8 (глубина) и 30 (продольная подача) миллиметров в секунду.

Делаем станки из фанеры своими руками

Делаем станки из фанеры своими руками

Делать станки из фанеры своими руками не так сложно, как кажется. Обязательно необходимо только изучить базовые чертежи самодельных аппаратов ЧПУ. Умелый подход позволяет делать токарные станки по дереву своими руками и другие самоделки различного профиля.

Особенности

Опытные специалисты давно знают, что самодельные ЧПУ из фанеры в ряде случаев не уступают полноценным металлическим аналогам заводского изготовления. Подобные конструкции используются, конечно, только там, где нет значительных механических напряжений, сильных вибраций, нагрева и необходимости отводить тепло водой. Технические качества фанерных аппаратов вполне могут быть на приличном уровне. При этом стоимость такой техники щадящая.

Внимание: такие системы рассчитаны лишь на частное использование. Фанерный станок не пригодится в качестве полноценного производственного рабочего места. Прежде чем его делать, нужно трезво оценить свои способности и знания в области столярного искусства. При отсутствии специальных навыков и умения работать с электроинструментами о самостоятельном изготовлении станков придется позабыть.

Кроме того, придется внимательно отбирать основной конструкционный материал.

Конструкция

На станки, даже наименее ответственные, нельзя пускать листы толщиной меньше 0,6 см. Во всяком случае, это относится к опорным и несущим частям сборки. Иногда исключение делают для кожухов и других легких частей. Однако и тогда приходится тщательно взвешивать все за и против, чтобы дать правильную оценку отобранным деталям. Ошибки при их выборе могут быть фатальными.

Читайте также:
Фантастическая гостиная в стиле хайтек: тонкости создания продукта постмодернизма

Некоторые эксперты полагают, что листа толщиной от 1 до 1,2 см вполне достаточно для отдельных станков, к примеру, если речь идет о раскройном столе. Другие специалисты исходят из того, что нужны всегда части большой толщины, даже для второстепенных участков конструкции. Существует также мнение, что склеенные из средней по толщине фанеры объемные детали эффективнее гасят вредные колебания при эпизодической вибрации. Но настоящие мастера всегда отдают предпочтение соображениям надежности и безопасности. Потому-то они стараются максимально использовать фанерные листы толщиной от 19 мм и более, несмотря на тяжесть и значительные цены.

Но ориентироваться только на одну толщину не следует. Обязательно надо учитывать тип исходной древесины. Хвойное дерево легче и мягче, его применяют главным образом для второстепенных узлов. Лиственный шпон дороже, и все же его используют чаще. А вот различия химического состава клеев и уровень стойкости к влаге практически не играют роли, вполне достаточно в большинстве случаев фанеры сорта ФК.

Что куда значимее, так это категория шпона. Увеличение числа сучков грозит растрескиванием и расслоением. Опытные профессионалы стараются брать листы второго сорта и выше. Не стоит пытаться покупать очень дешевый нешлифованный материал. Довести его до нужных параметров в кустарных условиях практически нереально.

Полностью шлифованные заготовки к тому же легче клеить.

В качестве оптимального кустарного образца можно рассматривать фанерный станок 4 в 1. Такая конструкция подразумевает использование коробки размером 54х32х88 см и стола величиной 65х98 см. Фанера на эти части идет толщиной 10 и 18 мм соответственно. Сечение дискового шлифовального узла в норме составит 18 см. Для работы по дереву нужен иной аппарат, типы резко отличаются, а именно:

  • распиливающий на базе ручной циркулярной пилы;
  • лобзиковый;
  • с применением дрели;
  • универсальная модель, подходящая для навешивания различных приспособлений.

Варианты самоделок

На основе фанеры вполне можно изготовить приличный токарный станок. Для работы понадобятся, кроме самого материала, следующие элементы:

  • клей;
  • пила циркулярная и пила торцовочная;
  • карандаш или маркер, линейка (для отметок);
  • фиксирующие струбцины;
  • подшипники, краска, шурупы, шуруповерт;
  • пластина из металла, электродвигатель и шкив;
  • ряд других деталей.

Для формирования основания станка применяют клееную фанеру толщиной 1,2 см. После нарезки и склеивания заготовок края торцуют, а пазы используют для установки стоек. Переднюю бабку также делают из фанеры, в ней необходимо просверлить отверстие под подшипник. Некоторые гайки и шайбы целесообразно сажать на клей. Ширина платформы и направляющей части должна совпадать, причем качественно сделанная платформа с зажимами свободно ходит в двух плоскостях.

Изготовление задней и передней бабок не отличается. Обе они требуют специальной защиты. Крепить силовой привод нужно на доску, соединяемую с основанием при помощи петли. Чтобы сделать шпиндель, требуется приварить две гайки в шайбе, а потом проделать «зубы» в гайке. Станок обязательно окрашивают.

Из фанеры можно сделать, разумеется, еще и сверлильный аппарат. Поскольку он обычно рассчитывается на сравнительно небольшие заготовки, можно применять фанерные листы толщиной 1 см. Все детали требуется подгонять максимально плотно, чтобы не было визуально заметных разрывов. Важно: листовой материал плохо переносит грубые механические воздействия, поэтому стыковка частей на гвозди и саморезы будет плохой идеей, можно применять лишь шипы и пазы, да еще иногда клей ПВА для максимального упрочнения.

Если планируется с помощью фанерного станка сверлить другие фанерные заготовки, требуется предусмотреть место для подкладки еще одного листа. В противном случае обрабатываемые изделия могут растрескаться и даже расколоться. Окрашивание аппаратов для сверления не слишком оправдано. Они подвергаются очень интенсивным вибрационным, тепловым и механическим воздействиям. А вот нанесение грунтовки очень даже полезно, особенно в мастерских, лишенных отопления.

Возможна и сборка фрезерных или деревообрабатывающих станков с ЧПУ. Траектория обрабатывающей части (как и в других типах) рассчитывается по трем осям. Если места в мастерской не хватает, можно использовать универсальные станины, рассчитанные на широкий спектр инструментов. Обычно рабочее поле составляет 60х90 см с вертикальным ходом 25 см.

Но если сделать чуть меньше, то никаких проблем обычно не возникает.

Есть две основных схемы устройства любых фанерных самодельных станков. В одном варианте движется стол, а портал остается неподвижен, во втором – роли меняются. Первый способ позволяет упростить конструкцию, но пригоден лишь для очень малых рабочих столов. Поэтому на практике гораздо чаще используют подход с перемещением портала и неподвижностью стола. Но и во второй схеме могут быть частные варианты.

Прежде всего, они касаются использования единственного центрального или двух боковых приводов. Вариант с 2 приводами подходит для сравнительно громоздких конструкций. Он позволяет минимизировать риск перекашивания портала относительно направляющих. При этом вся сборка имеет отличную жесткость. Величина обрабатываемой области определяется теми задачами, которые предстоит решать.

Чем больше станок, тем дороже он выходит, а кроме того, на мелких моделях проще исправить ошибки.

Часто полагают, что геометрия портала, пропорции дистанции между осями и рабочими направляющими, промежутки между подшипниками могут быть рассчитаны только с учетом сопромата и точной механики. Это во многом верно, но базовые моменты доступны даже неспециалистам, а именно:

  • уменьшение зазора над столом позволяет повысить жесткость конструкции;
  • оси тоже следует делать жестче и не слишком большой длины;
  • по возможности следует наращивать разрыв между направляющими по оси X, чтобы уменьшить ненормальное закручивание;
  • центр тяжести портала должен соответствовать точке расположения фрезы и при этом оказываться между подшипниками оси Y (из-за этого часто вертикальные стойки изгибаются назад);
  • требуется применять только приводные винты ШВП, дающие наименьший люфт;
  • винт должен оснащаться парой независимых подшипников и присоединяться к мотору через гибкую муфту (тогда достигается баланс простоты и качества)
  • сборка всех ключевых деталей может вестись на ящичных шипах (это куда эстетичнее, чем топорщащиеся во все стороны гайки).
Читайте также:
Четверть оконная: описание с фото, отзывы

Как сделать своими руками?

Особой необходимости искать готовые чертежи нет. Можно отталкиваться от схем металлических станков. Все равно каждое такое изделие уникально и оптимизируется под специфические задачи, под личные потребности владельцев. Однако необходимо обратить внимание на образцовые фотографии. Фанерные станки можно сделать как следует только при помощи качественного электроинструмента. Если листы до 1 см толщиной пилит лобзик, то более толстые обычно обрабатывают дисковой или циркулярной пилой. Впрочем, продвинутые электролобзики могут справиться и с распилом фанерных листов толщиной до 2 см.

Выбрать пазы и отверстия поможет ручная фреза. Двигать инструментами нужно плавно, чтобы минимизировать сколы. То же самое достигается использованием простого скотча. После окончательной сборки все поверхности и грани требуется отшлифовать. В качестве грунта можно применять смесь воды и ПВА в равных долях.

О том, как сделать ленточный шлифовальный станок из фанеры своими руками, вы можете узнать из видео ниже.

Как собрать самодельный фрезерный станок с ЧПУ + Чертежи и схемы!

Я давно хотел разместить серию постов по теме самодельных станков с ЧПУ. Но всегда останавливал тот факт, что Станкофф – станкоторговая компания. Дескать, как же так, мы же должны продавать станки, а не учить людей делать их самостоятельно. Но увидев этот проект я решил плюнуть на все условности и поделиться им с вами.

И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный настольный фрезерный станок с ЧПУ. Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта.

В этой статье будет достаточно много чертежей, примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

Предисловие от автора

Уже в 12 лет я мечтал построить машину, которая будет способна создавать различные вещи. Машину, которая даст мне возможность изготовить любой предмет домашнего обихода. Спустя два года я наткнулся на словосочетание ЧПУ или если говорить точнее, то на фразу “Фрезерный станок с ЧПУ”. После того как я узнал, что есть люди способные сделать такой станок самостоятельно для своих нужд, в своем собственном гараже, я понял, что тоже смогу это сделать. Я должен это сделать! В течение трех месяцев я пытался собрать подходящие детали, но не сдвинулся с места. Поэтому моя одержимость постепенно угасла.

В августе 2013 идея построить фрезерный станок с ЧПУ вновь захватила меня. Я только что окончил бакалавриат университета промышленного дизайна, так что я был вполне уверен в своих возможностях. Теперь я четко понимал разницу между мной сегодняшним и мной пятилетней давности. Я научился работать с металлом, освоил техники работы на ручных металлообрабатывающих станках, но самое главное я научился применять инструменты для разработки. Я надеюсь, что эта инструкция вдохновит вас на создание своего станка с ЧПУ!

Шаг 1: Дизайн и CAD модель

Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: токарном и фрезерном.

Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.

Файлы для скачивания «Шаг 1»

Шаг 2: Станина

Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения.

Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия. Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.

Большой портальный фрезерный станок с ЧПУ своими руками

Здравствуй дорогой читатель, в этой статье хочу поделиться своим опытом постройки фрезерного портального станка с числовым программным управлением.

Подобных историй в сети очень много, и я наверное мало кого удивлю, но может эта статья будет кому то полезна. Эта история началась в конце 2016 года, когда я со своим другом – партнером по разработке и производству испытательной техники аккумулировали некую денежную сумму. Дабы просто не прогулять деньги (дело то молодое), решили их вложить в дело, после чего пришла в голову идея изготовления станка с ЧПУ. У меня уже имелся опыт постройки и работы с подобного рода техникой, да и основной областью нашей деятельности является конструирование и металлообработка, что сопутствовало идее с постройкой станка ЧПУ.

Читайте также:
Стойка для дрели своими руками: инструкция по изготовлению

Вот тогда то и началась движуха, которая длиться и по сей день…

Продолжилось все с изучения форумов посвященных ЧПУ тематике и выбора основной концепции конструкции станка. Предварительно определившись с обрабатываемыми материалами на будущем станке и его рабочим полем, появились первые бумажные эскизы, в последствии которые были перенесены в компьютер. В среде трех мерного моделирования КОМПАС 3D, станок визуализировался и стал обрастать более мелкими деталями и нюансами, которых оказалось больше чем хотелось бы, некоторые решаем и по сей день.

Одним из начальных решений было определение обрабатываемых на станке материалов и размеры рабочего поля станка. Что касается материалов, то решение было достаточно простым — это дерево, пластик, композитные материалы и цветные металлы (в основном дюраль). Так как у нас на производстве в основном металлообрабатывающие станки, то иногда требуется станок, который обрабатывал бы быстро по криволинейной траектории достаточно простые в обработке материалы, а это в последствии удешевило бы производство заказываемых деталей. Отталкиваясь от выбранных материалов, в основном поставляемых листовой фасовкой, со стандартными размерами 2,44х1,22 метра (ГОСТ 30427-96 для фанеры). Округлив эти размеры пришли к таким значениям: 2,5х1,5 метра, рабочее пространство определенно, за исключением высоты подъёма инструмента, это значение выбрали из соображения возможности установки тисков и предположили что заготовок толще 200мм у нас не будет. Так же учли тот момент, если потребуется обработать торец какой либо листовой детали длиной более 200мм, для этого инструмент выезжает за габариты основания станка, а сама деталь/заготовка крепится к торцевой стороне основания, тем самым может происходить обработка торца детали.

Конструкция станка представляет собой сборное рамное основание из 80-й профильной трубы со стенкой 4мм. По обе стороны длинны основания, закреплены профильные направляющие качения 25-го типоразмера, на которые установлен портал, выполненный в виде трех сваренных вместе профильных трубы того же типоразмера что и основание.

Станок четырех осевой и каждую ось приводит в движение шарико-винтовая передача. Две оси расположены параллельно по длинной стороне станка, спаренных программно и привязанных к Х координате. Соответственно оставшиеся две оси – это Y и Z координаты.

Почему именно остановились на сборной раме: изначально хотели делать чисто сварную конструкцию с закладными приваренными листами под фрезеровку, установку направляющих и опор ШВП, но для фрезеровки не нашли достаточно большого фрезерно-координатного станка. Пришлось рисовать сборную раму, чтобы была возможность обработать все детали своими силами с имеющимися на производстве металлообрабатывающими станками. Каждая деталь, которая подвергалась воздействию электродуговой сварки, была отожжена для снятия внутренних напряжений. Далее все сопрягаемые поверхности были выфрезерованны, и в последствии подгонки пришлось местами шабрить.

Залезая вперед, сразу хочу сказать, что сборка и изготовление рамы оказалась самым трудоемким и финансово затратным мероприятием в постройке станка. Первоначальная идея с цельно сваренной рамой по всем параметрам обходит сборную конструкцию, по нашему мнению. Хотя многие могут со мной и не согласиться.

Многие любители и не только, собирают такого рода и размера (и даже большего) станки у себя в мастерской или гараже, делая целиком сварную раму, но без последующего отжига и механической обработки за исключением сверления отверстий под крепление направляющих. Даже если повезло со сварщиком, и он сварил конструкцию с достаточно хорошей геометрией, то в последствии работы этого станка ввиду дребезга и вибраций, его геометрия будет уходить, меняться. Я конечно могу во многом ошибаться, но если кто то в курсе этого вопроса, то прошу поделиться знаниями в комментариях.

Сразу хочу оговориться, что станки из алюминиевого конструкционного профиля мы тут пока рассматривать не будем, это скорее вопрос другой статьи.

Продолжая сборку станка и обсуждая его на форумах, многие начали советовать сделать внутри рамы и снаружи диагональные стальные укосины для добавления еще большей жесткости. Мы этим советом пренебрегать не стали, но и добавлять укосины в конструкцию то же, так как рама получилась достаточно массивной (около 400 кг). А по завершению проекта, периметр обошъётся листовой сталью, что дополнительно свяжет конструкцию.

Давайте теперь перейдем к механическому вопросу этого проекта. Как было ранее сказано, движение осей станка осуществлялось через шарико–винтовую пару диаметром 25мм и шагом 10мм, вращение которой передается от шаговых двигателей с 86 и 57 фланцами. Изначально предполагали вращать непосредственно сам винт, дабы избавиться от лишних люфтов и дополнительных передач, но без них не обошлось в виду того, что при прямом соединении двигателя и винта, последний на больших скоростях начало бы разматывать, особенно когда портал находится в крайних положениях. Учитывая тот факт, что длина винтов по Х оси составила почти три метра, и для меньшего провисания был заложен винт диаметром 25мм, иначе хватило бы и 16 мм-го винта.

Этот нюанс обнаружился уже в процессе производства деталей, и пришлось быстрым темпом решать эту проблему путем изготовления вращающейся гайки, а не винта, что добавило в конструкцию дополнительный подшипниковый узел и ременную передачу. Такое решение так же позволило хорошо натянуть винт между опорами.

Конструкция вращающейся гайки довольно проста. Изначально подобрали два конических шарикоподшипника, которые зеркально одеваются на ШВП гайку, предварительно нарезав резьбу с ее конца, для фиксации обоймы подшипников на гайке. Подшипники вместе с гайкой вставали в корпус, в свою очередь вся конструкция крепится на торце стойки портала. Спереди ШВП гайки закрепили на винты переходную втулку, которую в последствии в собранном виде на оправке обточили для придания соостности. На неё одели шкив и поджали двумя контргайками.

Читайте также:
Строим качественный деревянный каркасный гараж

Очевидно, что некоторые из вас, зададутся вопросом о том – «Почему бы не использовать в качестве механизма передающего движения зубчатую рейку?». Ответ достаточно прост: ШВП обеспечит точность позиционирования, большую двигающую силу, и соответственно меньший момент на валу двигателя (это то, что я с ходу вспомнил). Но есть и минусы – более низкая скорость перемещения и если брать винты нормального качества, то соответственно и цена.
Кстати, мы взяли ШВП винты и гайки фирмы TBI, достаточно бюджетный вариант, но и качество соответствующее, так как из взятых 9 метров винта, пришлось выкинуть 3 метра, ввиду несоответствия геометрических размеров, ни одна из гаек просто не накрутилась…

В качестве направляющих скольжения, были использованы профильные направляющие рельсового типоразмера 25мм, фирмы HIWIN. Под их установку были выфрезерованны установочные пазы для соблюдения параллельности между направляющими.

Опоры ШВП решили изготовить собственными силами, они получились двух видов: опоры под вращающиеся винты (Y и Z оси) и опоры под не вращающиеся винты (ось Х). Опоры под вращающиеся винты можно было купить, так как экономии ввиду собственного изготовления 4 деталей вышло мало. Другое дело с опорами под не вращающиеся винты – таких опор в продаже не найти.

Из сказанного ранее, ось Х приводится в движение вращающимися гайками и через ременную зубчатую передачу. Так же через ременную зубчатую передачу решили сделать и две другие оси Y и Z, это добавит большей мобильности в изменении передаваемого момента, добавит эстетики в виду установки двигателя не вдоль оси винта ШВП, а сбоку от него, не увеличивая габариты станка.

Теперь давайте плавно перейдем к электрической части, и начнем мы с приводов, в качестве них были выбраны шаговые двигатели, разумеется из соображений более низкой цены по сравнению с двигателями с обратной связью. На ось Х поставили два двигателя с 86-м фланцем, на оси Y и Z по двигателю с 56-м фланцем, только с разным максимальным моментом. Ниже постараюсь представить полный список покупных деталей…

Электрическая схема станка довольно проста, шаговые двигатели подключаются к драйверам, те в свою очередь подключается к интерфейсной плате, она же соединяется через параллельный порт LPT с персональным компьютером. Драйверов использовал 4 штуки, соответственно по одной штуке на каждый из двигателей. Все драйвера поставил одинаковые, для упрощения монтажа и подключения, с максимальным током 4А и напряжением 50В. В качестве интерфейсной платы для станков с ЧПУ использовал относительно бюджетный вариант, от отечественного производителя, как указанно на сайте лучший вариант. Но подтверждать или опровергать это не буду, плата проста в своем применении и самое главное, что она работает. В своих прошлых проектах применял платы от китайских производителей, они тоже работают, и по своей периферии мало отличаются, от использованной мной в этом проекте. Заметил во всех этих платах, один может и не существенный, но минус, на них можно всего лишь установить до 3-х концевых выключателя, но на каждую ось требуется как минимум по два таких выключателя. Или я просто не разобрался? Если у нас 3-х осевой станок, то соответственно нам надо установить концевые выключатели в нулевых координатах станка (это еще называется «домашнее положение») и в самых крайних координатах чтобы в случае сбоя или не хватки рабочего поля, та или иная ось просто не вышла из строя (попросту не сломалась). В моей схеме использовано: 3 концевых без контактных индуктивных датчика и аварийная кнопка «Е-СТОП» в виде грибка. Силовая часть запитана от двух импульсных источников питания на 48В. и 8А. Шпиндель с водяным охлаждением на 2,2кВт, соответственно включенный через частотный преобразователь. Обороты устанавливаются с персонального компьютера, так как частотный преобразователь подключен через интерфейсную плату. Обороты регулируются с изменения напряжения (0-10 вольт) на соответствующем выводе частотного преобразователя.

Все электрические компоненты, кроме двигателей, шпинделя и конечных выключателей были смонтированы в электрическом металлическом шкафу. Все управление станком производится от персонального компьютера, нашли старенький ПК на материнской плате форм фактора ATX. Лучше бы, чуть ужались и купили маленький mini-ITX со встроенным процессором и видеокартой. При не малых размерах электрического ящика, все компоненты с трудом разместились внутри, их пришлось располагать достаточно близко друг к другу. В низу ящика разместил три вентилятора принудительного охлаждения, так как воздух в нутрии ящика сильно нагревался. С фронтальной стороны прикрутили металлическую накладку, с отверстиями под кнопки включения питания и кнопки аварийного останова. Так же на этой накладке разместили панельку для включения ПК, ее я снял с корпуса старого мини компьютера, жаль, что он оказался не рабочим. С заднего торца ящика тоже закрепили накладку, в ней разместили отверстия под разъемы для подключения питания 220V, шаговых двигателей, шпинделя и VGA разъем.

Все провода от двигателей, шпинделя, а также водяные шланги его охлаждения проложили в гибкие кабель каналы гусеничного типа шириной 50мм.

Что касается программного обеспечение, то на ПК размещенного в электрическом ящике, установили Windows XP, а для управления станком применили одну из самых распространенных программ Mach3. Настройка программы осуществляется в соответствии с документацией на интерфейсную плату, там все описано достаточно понятно и в картинках. Почему именно Mach3, да все потому же, был опыт работы, про другие программы слышал, но их не рассматривал.

Технические характеристики:

Рабочее пространство, мм: 2700х1670х200;
Скорость перемещения осей, мм/мин: 3000;
Мощность шпинделя, кВт: 2,2;
Габариты, мм: 2800х2070х1570;
Вес, кг: 1430.

Читайте также:
Шторы в зал: фото новинок, современные идеи

Список деталей:

Профильная труба 80х80 мм.
Полоса металлическая 10х80мм.
ШВП TBI 2510, 9 метров.
ШВП гайки TBI 2510, 4 шт.
Профильные направляющие HIWIN каретка HGH25-CA, 12 шт.
Рельс HGH25, 10 метров.
Шаговые двигатели:
NEMA34-8801: 3 шт.
NEMA 23_2430: 1шт.
Шкив BLA-25-5M-15-A-N14: 4 шт.
Шкив BLA-40-T5-20-A-N 19: 2 шт.
Шкив BLA-30-T5-20-A-N14: 2 шт.

Плата интерфейсная StepMaster v2.5: 1 шт.
Драйвер шагового двигателя DM542: 4шт. (Китай)
Импульсный источник питания 48В, 8А: 2шт. (Китай)
Частотный преобразователь на 2,2 кВт. (Китай)
Шпиндель на 2,2 кВт. (Китай)

Основные детали и компоненты вроде перечислил, если что-то не включил, то пишите в комментарии, добавлю.

Опыт работы на станке: В конечном итоге спустя почти полтора года, станок мы все же запустили. Сначала настроили точность позиционирования осей и их максимальную скорость. По словам более опытных коллег максимальная скорость в 3м/мин не высока и должна быть раза в три выше (для обработки дерева, фанеры и т.п.). При той скорости, которой мы достигли, портал и другие оси упершись в них руками (всем телом) почти не остановить — прёт как танк. Начали испытания с обработки фанеры, фреза идет как по маслу, вибрации станка нет, но и углублялись максимум на 10мм за один проход. Хотя после заглубляться стали на меньшую глубину.

По игравшись с деревом и пластиком, решили погрызть дюраль, тут я был в восторге, хоть и сломал сначала несколько фрез диаметром 2 мм, пока подбирал режимы резания. Дюраль режет очень уверенно, и получается достаточно чистый срез, по обработанной кромке.

Сталь пока обрабатывать не пробовали, но думаю, что как минимум гравировку станок потянет, а для фрезеровки шпиндель слабоват, жалко его убивать.

А в остальном станок отлично справляется с поставленными перед ним задачами.

Вывод, мнение о проделанной работе: Работа проделана не малая, мы в итоге изрядно приустали, так как ни кто не отменял основную работу. Да и денег вложено не мало, точную сумму не скажу, но это порядка 400т.р. Помимо затрат на комплектацию, основная часть расходов и большая часть сил, ушла на изготовление основания. Ух как мы с ним намаялись. А в остальном все делалось по мере поступления средств, времени и готовых деталей для продолжения сборки.

Станок получился вполне работоспособным, достаточно жестким, массивным и качественным. Поддерживающий хорошую точность позиционирования. При измерении квадрата из дюрали, размерами 40х40, точность получилась +- 0,05мм. Точность обработки более габаритных деталей не замеряли.

Что дальше…: По станку есть еще достаточно работы, в виде закрытия пыле — защитой направляющих и ШВП, обшивки станка по периметру и установки перекрытий в середине основания, которые будут образовывать 4 больших полки, под объем охлаждения шпинделя, хранения инструмента и оснастки. Одну из четвертей основания хотели оснастить четвертой осью. Также требуется на шпиндель установить циклон для отвода и сбора стружки о пыли, особенно если обрабатывать дерево или текстолит, от них пыль летит везде и осаждается повсюду.

Что касается дальнейшей судьбы станка то тут все не однозначно, так как у меня возник территориальный вопрос (я переехал в другой город), и станком заниматься сейчас почти некому. И вышеперечисленные планы не факт что сбудутся. Не кто этого два года назад и предположить не мог.

В случае продажи станка с его ценником все не понятно. Так как по себестоимости продавать откровенно жалко, а адекватная цена в голову пока не приходит.

На этом я пожалуй закончу свой рассказ. Если что-то я не осветил, то пишите мне, и я постараюсь дополнить текст. А в остальном многое показано в видео про изготовления станка на моем YouTube канале.

Проект “станок с чпу своими руками” + чертежи

В интернете не так много готовых проектов по которым можно самостоятельно собрать себе станок с чпу.

  • Многие жаждут денег за подобные конструкции, которые по сути ничего из себя не представляют.
  • Поэтому я взял какой-то станок, который нашел на авито и на его базе, точнее по фоткам, быстренько “спроектировал”, а точнее нарисовал станок.
  • Мой проект поможет тем, кто хочет самостоятельно своими руками собрать фрезерный станок с чпу.
  • Причины могут быть разные, нет денег на готовый или просто хочется построить что-то своими руками.

В любом случае данная статья для Вас.

Написать эту статью подтолкнуло очередное заявление одного “производителя”

Некоторые “спецы” продают станки чпу и их комплектующие дешево, пытаясь, как мне кажется, заработать на неосведомленности жаждущих заполучить такой волшебный станок для своих столярных целей. Я говорю о фрезерных станках с чпу по дереву, так как по моему разумению, они не годятся для коммерческого использования и причиной тому – время затрачиваемое на обработку изделия, а большинство нуждается в таком станке в коммерческих целях.

Если у вас много времени, то эта статья поможет сэкономить денег, если вы вдруг решите собрать такой станок.

В данной статье вы получите полную информацию по механике трех-осевого станка портального типа, вы найдете чертежи и файлы для передачи на производство или самостоятельного изготовления элементов и комплектующих станка.

Сложности и трудности

Основная сложность – это подбор нужных комплектующих под свои желания рабочего поля станка.
Сделано все под готовые детали с алиэкспресс. По сути вы получаете готовый конструктор и проблем со сборкой возникнуть не должно.

План действий по сборке фрезерного станка

1. Определяем размеры станка

  • Размер рабочего поля станка зависит от ходовых винтов
  • Винты со стандартной разделкой концов продаются на али комплектами.
  • В комплект входит: винт, гайка, крепление гайки, муфта и держатели винтов.
Читайте также:
Стол своими руками : как сделать журнальный и компьютерный, письменный и туалетный столики

Данный станок имеет следующие размеры:

  • оси Y: винт 700мм, профиль 685мм.
  • соединительный профиль 685мм
  • оси X: винт 470мм, профиль 455мм.
  • ось Z: винт 300мм

при этих параметрах

  • рабочее поле станка: X-295мм Y-480мм Z-160мм. размеры без установленных концевиков.

Пример

для увеличения размеров по оси Y
берем винт 1500мм, тогда длина профиля составит 1485мм (1500-700+685=1485)
увеличиваем ось X (портал)
для винта длиной 1200мм понадобится профиль длиной 1185мм (1200-470+455=1185)
а длина соединительного профиля составит 1385мм (685+(1200-500)=1385)
при таких винтах получаем станок с рабочим полем X-995м Y-1280мм Z-160мм

2. Металлические части

  • Станок состоит из 14 разных частей 6мм конструкционной стали Ст3. Части собираются посредством сварки, для позиционирования используется шип-паз, с его помощью без труда собираются элементы в единую деталь.
  • Кликнув по картинке в описании можно посмотреть номер и количество деталей необходимых для сборки станка.
  • Элементы детали рекомендую заказывать на лазерной резке. Малые отверстия КЕРНИМ для дальнейшего просверливания отверстий и нарезания резьбы.

3. Алюминиевый профиль

  • Металлический профиль 60х60 30 серия нарезаем в размер в зависимости от длины выбранного ходового винта.*
  • Выбираем длину винта и получаем длину профиля для каждой оси. Как посчитать я писал выше.
  • Для соединения сварных деалей с профилем используются Т-образные гайки
  • Винты М5,M6,M8,М10

4. Комплектующие с АЛИ

  • Четыре винта 1605 (ШВП) разной длины (оси Х,Y,Z)
  • Четыре гайки 1605
  • Четыре муфты с диаметрами 10мм и 8мм
  • Четыре крепления гайки
  • Четыре фиксируемые опоры FK12
  • Четыре Шаговых мотора серии NEMA23 на 18кгс
  • Цилиндрические рельсы SBR20 на ось X,Y SBR16 на ось Z
  • Подшипники SBR20UU на X,Y (8 шт.) SBR16UU на Z (4 шт.)

ШВП – Шариковинтовая передача 1605, где 16 его диаметр, а 5 шаг на 1 оборот.
* профиль тоже можно посмотреть на алиэкспресс

5. Сборка деталей

  • Предварительно во всех элементах нарезаем резьбу согласно чертежам.
  • Сборка элементов производится посредством шип-паза, после сборки и фиксации – провариваем.
  • Провариваем без фанатизма, иначе поведет и все будет кривое.
  • Варим на прихватки либо завариваем шип-паз или комбинируем.
5.1. Собираем “углы” крепления основоной рамы станка

Для сборки необходимо собрать из деталей 1,2,3,4 угловые элементы рамы станка с чпу, чертеж прилагается.

Предварительно нарежьте резьбу согласно чертежу.

Обратите внимание, что “углы” собираются зеркально

5.2. Собираем стойки портала

Стойки портала для станка с чпу собираются аналогично угловым элементам, берем детале 5,6,7,8 и внимательно собираем.
Cледите за тем с какой стороны устанавливаете маленькие детали, на Деталь 5 устанавливается мотор приводящий в движение каретку по оси.

Предварительно нарежьте резьбу согласно чертежу.

5.3. Собираем ось Z станка своими руками

Основу оси Z собираем из деталей 9,12,13, смотрим на картинку и внимательно собираем, не перепутайте.

Предварительно нарежте резьбу согласно чертежу.

Фиксируйте свариваемые детали, к примеру можно взять квадратную трубу и притянув к ней струбцинами детали получим угол 90 градусов. Даже если не получится идеального угла, муфта соединения вала мотора с ШВП (винтом) имеет мягкую вставку, которая компенсирует не соосность.

6. Собираем сам станок

Все элементы готовы и теперь осталось только собрать-скрутить все детали в одно целое, чтобы получить станок на который впоследствии установить чпу систему. В данном варианте это либо MACH 3,4 или LinuxCNC

Алюминиевый конструкционный профиль собирается на Т-гайках, поэтому берем горсть гаек и винтов я использую с внутренним шестигранником (DIN 912). Берем винты класса прочности 8.8 они есть в любом хозмаге.

6.1. Собираем левую и правую часть оси Y
  • 1. устанавливаем угловые элементы.
  • 2. Собираем направляющую, на цилиндрический рельс SBR20 одеваем две каретки SBR20UU и прикручиваем его к алюминиевому профилю 60х60 винтами М6.
  • 3. Тиким же образом собираем вторую направляющую.
  • 4. Все теми же винтами М8 соединяем обе направляющие между собой заранее подготовленным профилем, который задает длину оси X, получаем основание станка. Не затягиваем.
  • 5. В угловые элементы устанавливаем фиксируемые опоры винтов FK12, крепим на винты М5.
  • 6. Берем винт с накрученной на него гайкой, одеваем крпеление гайки к стойке и прикручиваем его на 6 винтов М5.
  • 7. Концом с резьбой устанавливаем винт ШВП 1605 в опору FK12 слегка фиксируя гайкой на опоре.
  • 8. Шаговый двигатель NEMA 23 c надетой на вал муфтой, устанавливаем на свое место. Крепим винтами М5. Смотрим рисунок.
  • 9. Затягиваем гайку, фиксирующую винт на опоре FK12 и фиксируем муфту на винте ШВП и валу двигателя, затягивая винты на соответсвующих половинках муфты.

6.2. Портал фрезерного станка, ось Х
  • 1. Соответвующие стороне стойки портала крепим на подшипники SBR20UU на винты М5. Гайку ШВП (SFU1605) не прикручиваем к стойке.
  • 2. Устанавливаем заготовленный для портала профиль и прикручиваем его винтами М8, Не затягиваем.
  • 3. Прокатываем портал в одну сторону до упора и подтягиваем винты М8 основной рамы станка.
  • 4. Прокатываем портал в противоположную сторону и подтягиваем винты основной рамы станка.
  • 5. Проверяем как перемещаяется портал, прокатывая его из стороны в сторону. Нужно добиться плавного перемещения портала по всей длине оси Y. После чего протягиваем винты основной рамы станка.
  • 6. Собираем направляющую оси X, на цилиндрический рельс SBR20 одеваем две каретки SBR20UU и прикручиваем его к конструкционному профилю сечением 60х60 винтами М6.
  • 7. В правую часть портала устанавливаем опору винта FK12, прикручиваем винтами М5.
  • 8. Собираем винт, накручиваем на него гайку, на гайку одеваем крпеление и прикручиваем его на 6 винтов М5.
  • 9. Концом с резьбой устанавливаем винт ШВП 1605 в опору FK12, слегка фиксируя гайкой на опоре.
  • 10. Шаговый двигатель NEMA 23 c надетой на его вал муфтой устанавливаем на свое место. Крепим винтами М5. Смотрим рисунок.
  • 11. Затягиваем гайку фиксирующую винт на опоре FK12 и фиксируем муфту на винте ШВП, на валу двигателя не фиксируем.
Читайте также:
Установка москитной сетки на пластиковое окно

6.3. Ось Z фрезерного станка
  • 1. Опору FK12 устанавливаем снизу платформы оси Z, крепим на винты М5.
  • 2. Устанавливаем основу оси Z на подшипники SBR20UU, крепим винтами М5. Подтягиваем винты.
  • 3. Прокатывая влево, подтягиваем винты крепления профиля к стойке, прокатывая вправо, подтягиваем винты крепления правой стойки.
  • 4. Регулировкой добиваемся плавного движения оси X, затягиваем винты крепления профиля к стойкам.
  • 5. Одеваем подшипники SBR16UU на цилиндрические рельсы SBR16, крепим их через проставки Деталь 14 к основе оси Z винтами М5
  • 6. Прикручиваем Деталь 10 на подшипники SBR16UU, подтягиваем винты.
  • 7. Перемещая каретку оси Z, добиваемся плавного хода, фиксируем винты крепления цилиндрического рельса и Детали 10.
  • 8. Устанавливаем винт с гайкой и модулем крепления гайки к подвижной пастине крепения шпинделя. Фиксируем финт гайкой на опоре.
  • 9. устанавливаем двигатель с муфтой.
  • 10. Устанавливаем крепление шпинделя. В данном варианте используется проставка под брекет шпинделя.

Ну вот, собственно, и вся сборка станка чпу своими руками которую осилит любой желающий.

Ведь здесь от вас требуется только сварка и нарезание резьб. Ну может, еще подрезать цилиндрические рельсы.

  • Не забудьте протянуть все винты.
  • Если нужно, установите концевики, гибкий кабель-канал.
  • Если лень нарезать резьбы, используйте винты с гайками.

Что можно доработать

  • Добавить крепления гибкого кабель-канала.
  • Увеличить жесткость, например добавить перемычек или сделать “жертвенный” стол из фанеры 18мм
  • Проработать стойки портала и конструкцию оси Z, облегчив всю конструкцию.

Заключение

Этот станок может собрать каждый.

Я постарался до мелочей рассказать и показать как и из чего можно все это собрать.

  • Габарит станка вы выбираете сами, только не надо делать длинные станки с таким конструктативом.
  • Такой станок – прекрасная возможность познакомиться с обработкой материалов резанием. Вы узнаете на каких режимах сможет работать станок с таким конструктативом, сколько времени будет занимать изготовление той или иной детали, 3д картины и тд.

И уже потом сделаете вывод на собственном опыте (как это сделал я собрав второй станок) первый тут), что вы хотите от фрезерного станка с чпу и будете понимать, что могут и что не могут станки супербюджетного ценового диапазона.

И не будете вестись на всякие там уловки, что этот станок все сделает за вас, он позводлит вам сделать все то о чем вы только мечтали.
Мое любимое изречение продаванов таких станков “хотите мы можем поставить такой шпиндель, а хотите в пять раз мощнее”. И ни один не спрашивает, а что вы будете на нем резать. Мощьный шпиндель на дохлом станке не сможет раскрыть весь потенциал, и так со всеми элементами станка. (это касаемо дешевых полусамодельных станков коих пруд пруди)

Станок – это железяка и очень непростая, когда дела касается нагрузок, огромную работу нужно провести, чтобы заставить его работать правильно.

Все в этой статье – мое собственное мнение, основанное на личном опыте постройки и обслуживании своих станков и модернизации станков от таких “супер-пупер” производителей.

Я не являюсь супер специалистом в данной области и у меня нет никаких ученых степеней, но есть 5 летний опыт работы на своих двух самодельных станках.

Успехов тем, кто хочет собрать свой станок!

Если понравиться статья ПОДЕЛИСЬ в соцсетях! пусть как можно больше желающих собрать станок своими руками получат такую возможность.

сделаем хэштег данного проекта #станоксавито

Кому лень отрисовывать каждую деталь станка и собирать, есть готовая сборка станка с чпу в solidworks стоимость 500 рубликов – писать в телеграм, почту(на почту отвечаю с задержкой)

Ребята я тут набросал ознакомительный ролик про свой второй фрезерный станок, если есть желание посмотрите.

Простой и недорогой 3-х осевой станок с ЧПУ своими руками

3-х осевой станок с ЧПУ

Целью этого проекта является создание настольного станка с ЧПУ. Можно было купить готовый станок, но его цена и размеры меня не устроили, и я решил построить станок с ЧПУ с такими требованиями:
– использование простых инструментов (нужен только сверлильный станок, ленточная пила и ручной инструмент)
– низкая стоимость (я ориентировался на низкую стоимость, но всё равно купил элементов примерно на $600, можно значительно сэкономить, покупая элементы в соответствующих магазинах)
– малая занимаемая площадь(30″х25″)
– нормальное рабочее пространство (10″ по оси X, 14″ по оси Y, 4″ по оси Z)
– высокая скорость резки (60″ за минуту)
– малое количество элементов (менее 30 уникальных)
– доступные элементы (все элементы можно купить в одном хозяйственном и трех online магазинах)
– возможность успешной обработки фанеры

Станки других людей

Вот несколько фото других станков, собравших по данной статье

Станок от Chris

Фото 1 – Chris с другом собрал станок, вырезав детали из 0,5″ акрила при помощи лазерной резки. Но все, кто работал с акрилом знают, что лазерная резка это хорошо, но акрил плохо переносит сверление, а в этом проекте есть много отверстий. Они сделали хорошую работу, больше информации можно найти в блоге Chris’a. Мне особенно понравилось изготовление 3D объекта при помощи 2D резов.

Станок от Sam McCaskill

Фото 2 – Sam McCaskill сделал действительно хороший настольный станок с ЧПУ. Меня впечатлило то, что он не стал упрощать свою работу и вырезал все элементы вручную. Я впечатлён этим проектом.

Читайте также:
Укладка керамогранитной плитки на пол своими руками

Станок от Angry Monk

Фото 3 – Angry Monk’s использовал детали из ДМФ, вырезанные при помощи лазерного резака и двигатели с зубчато-ремённой передачей, переделанные в двигатели с винтом.

Станок от Bret Golab

Фото 4 – Bret Golab’s собрал станок и настроил его для работы с Linux CNC (я тоже пытался сделать это, но не смог из-за сложности). Если вы заинтересованы его настройками, вы можете связаться с ним. Он сделал великую работу!

Характеристики станка

Боюсь что у меня недостаточно опыта и знаний, чтобы объяснять основы ЧПУ, но на форуме сайта CNCZone.com есть обширный раздел, посвященный самодельным станкам, который очень помог мне.

Характеристики станка

Резак: Dremel или Dremel Type Tool

Параметры осей:

Ось X
Расстояние перемещения: 14″
Привод: Зубчато-ременная передача
Скорость: 60″/мин
Ускорение: 1″/с2
Разрешение: 1/2000″
Импульсов на дюйм: 2001

Ось Y
Расстояние перемещения: 10″
Привод: Зубчато-ременная передача
Скорость: 60″/мин
Ускорение: 1″/с2
Разрешение: 1/2000″
Импульсов на дюйм: 2001

Ось Z (вверх-вниз)
Расстояние перемещения: 4 ”
Привод: Винт
Ускорение: .2″/с2
Скорость: 12″/мин
Разрешение: 1/8000 ”
Импульсов на дюйм: 8000

Необходимые инструменты

Я стремился использовать популярные инструменты, которые можно приобрести в обычном магазине для мастеров.

Инструменты

Электроинструмент:
– ленточная пила или лобзик
– сверлильный станок (сверла 1/4″, 5/16″, 7/16″, 5/8″, 7/8″, 8мм (около 5/16″)), также называется Q
– принтер
– Dremel или аналогичный инструмент (для установки в готовый станок).

Ручной инструмент:
– резиновый молоток (для посадки элементов на места)
– шестигранники (5/64″, 1/16″)
– отвертка
– клеевой карандаш или аэрозольный клей
– разводной ключ (или торцевой ключ с трещоткой и головкой 7/16″)

Необходимые материалы

В прилагаемом PDF файле (CNC-Part-Summary.pdf) предоставлены все затраты и информация о каждом элементе. Здесь предоставлена только обобщенная информация.

Материалы

Листы — $ 20
-Кусок 48″х48″ 1/2″ МДФ (подойдет любой листовой материал толщиной 1/2″ Я планирую использовать UHMW в следующей версии станка, но сейчас это выходит слишком дорого)
-Кусок 5″x5″ 3/4″ МДФ (этот кусок используется в качестве распорки, поэтому можете брать кусок любого материала 3/4″)

Двигатели и контроллеры — $ 255
-О выборе контроллеров и двигателей можно написать целую статью. Коротко говоря, необходим контроллер, способный управлять тремя двигателями и двигатели с крутящим моментом около 100 oz/in. Я купил двигатели и готовый контроллер, и всё работало хорошо.

Аппаратная часть — $ 275
-Я купил эти элементы в трех магазинах. Простые элементы я приобрёл в хозяйственном магазине, специализированные драйвера я купил на McMaster Carr (http://www.mcmaster.com), а подшипники, которых надо много, я купил у интернет-продавца, заплатив $40 за 100 штук (получается довольно выгодно, много подшипников остается для других проектов).

Программное обеспечение — (бесплатно)
-Необходима программа чтобы нарисовать вашу конструкцию (я использую CorelDraw), и сейчас я использую пробную версию Mach3, но у меня есть планы по переходу на LinuxCNC (открытый контролер станка, использующий Linux)

Головное устройство — (дополнительно)
-Я установил Dremel на свой станок, но если вы интересуетесь 3D печатью (например RepRap) вы можете установить свое устройство.

Печать шаблонов

У меня был некоторый опыт работы лобзиком, поэтому я решил приклеить шаблоны. Необходимо распечатать PDF файлы с шаблонами, размещенными на листе, наклеить лист на материал и вырезать детали.

Шаблоны

Имя файла и материал:
Всё: CNC-Cut-Summary.pdf
0,5″ МДФ (35 8.5″x11″ листов с шаблонами): CNC-0.5MDF-CutLayout-(Rev3).pdf
0,75″ МДФ: CNC-0.75MDF-CutLayout-(Rev2).pdf
0,75″ алюминиевая трубка: CNC-0.75Alum-CutLayout-(Rev3).pdf
0,5 “MDF (1 48″x48” лист с шаблонами): CNC-(One 48×48 Page) 05-MDF-CutPattern.pdf

Примечание: Я прилагаю рисунки CorelDraw в оригинальном формате (CNC-CorelDrawFormat-CutPatterns (Rev2) ZIP) для тех, кто хотел бы что то изменить.

Примечание: Есть два варианта файлов для МДФ 0,5″. Можно скачать файл с 35 страницами 8.5″х11″ (CNC-0.5MDF-CutLayout-(Rev3), PDF), или файл (CNC-(Один 48×48 Page) 05-MDF-CutPattern.pdf) с одним листом 48″x48″для печати на широкоформатном принтере.

Шаг за шагом:
1. Скачайте три PDF-файла с шаблонами.
2. Откройте каждый файл в Adobe Reader
3. Откройте окно печати
4. (ВАЖНО) отключите Масштабирование страниц.
5. Проверьте, что файл случайно не масштабировался. Первый раз я не сделал это, и распечатал всё в масштабе 90%, о чем сказано ниже.

Наклеивание и выпиливание элементов

Приклейте распечатаные шаблоны на МДФ и на алюминиевую трубу. Далее, просто вырезайте деталь по контуру.

Наклейка элементов

Выпиливание элементов

Выпиливание элементов

Как было сказано выше, я случайно распечатал шаблоны в масштабе 90%, и не заметил этого до начала выпиливания. К сожалению, я не понимал этого до этой стадии. Я остался с шаблонами в масштабе 90% и, переехав через всю страну, я получил доступ к полноразмерному ЧПУ. Я не выдержал и вырезал элементы при помощи этого станка, но не смог просверлить их с обратной стороны. Именно поэтому все элементы на фотографиях без кусков шаблона.

Выпиливание элементов

Сверление

Я не считал сколько именно, но в этом проекте используется много отверстий. Отверстия, которые сверлятся на торцах особенно важны, но не пожалейте времени на них, и использовать резиновый молоток вам придется крайне редко.

Места с отверстиями в накладку друг на друга это попытка сделать канавки. Возможно, у вас есть станок с ЧПУ, на котором это можно сделать лучше.

Сборка

Если вы дошли до этого шага, то я поздравляю вас! Глядя на кучу элементов, довольно сложно представить, как собрать станок, поэтому я постарался сделать подробные инструкции, похожие на инструкции к LEGO. (прилагаемый PDF CNC-Assembly-Instructions.pdf). Довольно интересно выглядят пошаговые фотографии сборки.

Сборка

Сборка станка

Сборка станка

Готово!

Станок готов! Надеюсь, вы сделали и запустили его. Я надеюсь, что в статье не упущены важные детали и моменты. Вот видео, в котором показано вырезание станком узора на розовом пенопласте.

ЧПУ станок

ЧПУ станок

none Опубликована: 2012 г. 0 2

Читайте также:
Устройство кровельного пирога - из чего состоит кровельный пирог

Вознаградить Я собрал 0 0

ЧПУ из фанеры: чертежи, материалы, инструменты

В последнее время ЧПУ-станки уже не являются чем-то диковинным и стали более доступны для приобретения, но готовые образцы сильно кусаются, поэтому выгоднее собрать ЧПУ-фрезер своими руками. Почти все комплектующие для него можно купить в любом строительном магазине.

Самодельные станки из фанеры

фото самодельного станка

фото

Самодельные устройства ЧПУ из фанеры предназначены для обработки дерева, пластика и способны нарезать фанеру или выступать в качестве гравера по мягкому металлу. Обрабатывать сталь или цветные металлы такой станок не способен в силу своих конструктивных особенностей — слишком непрочная конструкция, но для некоторых дел дома подходит лучше всего. Станок всегда можно разобрать по частям и упаковать для удобства и экономии места.

Создание ЧПУ станка из фанеры своими руками: подготовка материалов и инструментов

фото

Для производства устройства ЧПУ из фанеры, кроме элементов, которые будут сделаны из этого материала, нужно приобрести следующие части:

  • подшипники и валы;
  • направляющие для движения подвижных элементов;
  • соединительные элементы (гайки, шпильки и болты);
  • контроллер;
  • контрольный и силовой кабели;
  • ремни для вращения от движка к инструменту;
  • выключатели и датчики.

Справка: также потребуется компьютер, чтобы программировать контроллер. При этом если в компьютере нет возможности управления аппаратом, то потребуется пульт, на котором будут выведены кнопки включения и выключения.

Для того чтобы сделать фрезерный станок с ЧПУ, также потребуются некоторые инструменты:

  • сварочный аппарат для производства металлического корпуса;
  • молоток;
  • отвертка;
  • ножницы;
  • пассатижи и плоскогубцы;
  • изолента;
  • суперклей;
  • клей ПВА;
  • герметик;
  • ключи для сборки.

Как выпилить детали для CNC-станка из фанеры?

фото

фото

Все элементы, не вошедшие в список выше, необходимо сделать из фанеры. Поэтому вопрос о грамотной обработке стоит на первом месте при изготовлении станка из фанеры.

Как правильно распилить фанерный лист?

В процессе выпиливания листа фанеры нужно придерживаться некоторых правил:

  • Для материала, толщина которого составляет десять миллиметров, используют ручные и электрические лобзики, у которых полотно имеет небольшие зубья.
  • Фанеру больше десяти миллиметров раскраивают дисковой пилой.
  • Материал для распила следует высушить, в противном случае он расслоится.
  • Раскраивать лист следует около волокон первого слоя.
  • Если будет применен электрический инструмент, то подача должна быть на минимуме.
  • Чтобы предотвратить сколы, можно использовать бумажный скотч.

Как правильно сделать отверстия?

Чтобы сделать отверстия в элементах фанеры, лучше применить сверлильный станок. При этом нужно выбирать большую скорость вращения сверла и минимальную его подачу. Также может быть использован фрезерно-гравировальный станок, что позволит сделать отверстия любой формы.

Справка: Если такого устройства нет, то вполне подойдет и простая дрель. Единственное, что нужно, чтобы биение патрона было минимальное. В противном случае погрешность станет выше.

Как отшлифовать и обработать?

После процесса распиливания и сверления отверстий заготовку следует отшлифовать. Для этого используют наждачную бумагу. Шлифовка осуществляется около волокон и начинается от угла, который шлифуется уже в самом конце.

Справка: после процесса шлифования всю поверхность детали покрывают специальными составами, предотвращающими расклеивание и растрескивание.

Сборка ЧПУ фрезера из фанеры

фото устройства

детали из дерева

Сборка станка из фанеры с ЧПУ происходит в следующей последовательности:

  • Подготовка чертежей с учетом прокладок и подключения электрического оборудования.
  • Заказ необходимых частей.
  • После доставки всех частей можно приступить к установке станины.
  • Установка шпинделя.
  • Установка системы водоохлаждения. При такой процедуре придется применить фумленту и простой герметик, чтобы конструкция была надежной.
  • Подключение электрической проводки, установка кнопки аварийной остановки.
  • Подключение управляющей платы (она же контроллер).
  • Установка программного обеспечения и установка чертежей.
  • Настройка станка.

При сборке самодельного устройства необходимо учитывать несколько нюансов:

  • Клей нужно наносить на поверхность всех частей из фанеры при помощи маленькой кисточки. После этого детали совместить и прижать друг к другу с максимально безопасным для их целостности усилием. Лучше установить их под давлением, чтобы клей полностью высох.
  • Если будет применен эпоксидный клей, то схема нанесения такая же, как и в случае с ПВА. Большое внимание следует уделять тщательному размешиванию клея и соотношению отвердителя смолы. В любом случае нужно добавить больше необходимого количества отвердителя, благодаря чему полимеризация смолы будет более быстрая.

Остатки выдавившегося клея необходимо удалять с поверхности всех элементов сразу: после высыхания сделать швы гладкими будет достаточно сложно.

Справка: фанеру можно защитить специальной пропиткой для деревянных изделий. Пропитывать материал нужно до установки направляющих, контроллера и кареток.

Чертежи ЧПУ станка из фанеры своими руками

В самом начале всех предстоящих работ происходит выполнение чертежей. Они могут сильно отличаться друг от друга в зависимости от того, какой вид устройств с программным обеспечением был выбран. При создании чертежа заостряют внимание на следующих факторах:

  • какие элементы необходимо сделать самому, а какие приобрести готовыми;
  • какой толщины будет фанера;
  • как будут закрепляться детали.

Элементы обычной формы можно выполнить самому. К ним относятся: станина, столешница, кожух, держатели. Части посложнее приобретают уже в готовом виде. Люди, у которых нет опыта, могут найти готовые чертежи в сети Интернет.

Справка: Острой нужды в готовых чертежах нет. За основу можно взять схему металлического устройства. Ведь каждое такое изделие уникальное и способно оптимизироваться под специфические задачи и потребности владельцев.

Фанера является универсальным материалом, эксплуатационные качества которого позволяют применять его даже для создания высокотехнологичных устройств, которые испытывают значительные нагрузки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: