Что такое трансформатор тока, его конструкция и принцип работы

Трансформаторы тока (ТТ), принцип работы и область применения

Функционирующие энергетические системы требуют постоянного контроля и различных коммутирующих действий. И для того, чтобы преобразовывать высоковольтные электрические величины в пропорционально измененные аналоги и используются трансформаторы. В частности для уменьшения первичного тока до приемлемых величин для измерительных и защитных приборов используются трансформаторы тока. О них и пойдет речь в приведенном материале.

Как функционирует трансформатор тока

Работа трансформатора тока (ТТ) основана на законе об электромагнитной индукции, который работает в электрических и магнитных полях. Они подвержены изменениям по форме гармоник синусоидальных величин переменного характера.

В трансформаторе тока происходит трансформация первичного вектора тока во вторичное значение с полным соблюдением пропорциональности и с сохранением угла.

По выше представленной схеме можно понять процессы, идущие в работающем в трансформаторе тока. И они выглядят так:

По силовой обмотке 1 проходит ток I1, при этом преодолевается сопротивление обмотки Z1. Благодаря этому процессу вокруг катушки образовывается магнитный поток Ф1, который улавливается магнитопроводом, размещенным под прямым углом к направлению вектора I1. Благодаря именно подобному размещению обеспечиваются наименьшие потери электрической энергии при трансформации ее в магнитную.

Сформированный магнитный поток Ф1 пронизывает не только силовую катушку 1, но также и пронизывает вторичную обмотку 2. В результате этого во вторичной катушке наводится ЭДС E2, под влиянием оной в 2 формируется I2, уже преодолевающий сопротивление катушки Z2 и сопротивление нагрузки Zн. В результате данного процесса на выводах вторичной обмотки формируется падение напряжения U2.

При этом магнитный поток Ф2 уменьшает магнитный поток Ф1, а Ф трансформатора тока формируется геометрическим сложением двух векторов Ф1 и Ф2.

Коэффициент трансформации трансформаторов тока задается соотношением векторов I1/I2. И данное значение закладывается при разработке (производстве) изделий. По причине того, что в работающем ТТ протекающий ток постоянно меняется, данный коэффициент указывается в номинальной форме, например 600/5. Это Указывает на то, что данный ТТ рассчитан максимум на 600 Ампер и если такой ток будет в первичке, то ток во вторичке будет равен 5 Ампер.

Так же при проектировании закладывается еще очень важный параметр – класс точности, которым характеризуется величина отклонения реальных значений ТТ от расчетных.

Опасные факторы при работе ТТ

Так как магнитопровод ТТ реализован из электротехнической стали, обладающей отличной токовой проводимостью и он связывает магнитным путем две изолированные обмотки, в процессе работы есть вероятность повреждения изолирующего слоя, в результате чего вторичка может оказаться под высоким потенциалом.

Поэтому чтобы избежать электротравм среди обслуживающего персонала и сохранению работоспособности подключенного оборудования, один из выводов вторичной обмотки в обязательном порядке заземляется.

Выводы вторичной обмотки маркируются «И1» и «И2», а первичной обмотки «Л1» и «Л2». Если трансформатор включен в работу, то вторичные обмотки обязаны быть нагружены (подключены), в противном случае устанавливается закоротка.

Это необходимо выполнить потому, что при работе по первичной обмотке протекает ток, обладающий определенной мощностью (S=U*I). Она так же проходит процедуру трансформации во вторичные значения. И если токовые цепи вторичной обмотки разорваны, то значение тока стремится к нулевому значению, а вот напряжение наоборот резко увеличивается и на разомкнутой вторичке образуется высокое напряжение . А это крайне опасно!

Важно. Именно поэтому все токовые цепи должны быть собраны, а на неиспользуемых кернах должны быть установлены закоротки.

Модификации ТТ

Промышленность выпускает огромное количество вариаций трансформаторов тока, разнообразных размеров и классов точности. Но в энергетике получили широкое распространение комбинированные трансформаторы тока, где в одном изделии совмещены два керна: измерительный (0,5 R) и Релейный (защитный 10R)

По назначению трансформаторы тока подразделяются на:

1. Промежуточные. Предназначены для повторного преобразования величины.

2. Защитные. Подключаются к токовым цепям защит.

3. Лабораторные. Обладающие повышенным классом точности и служащие в качестве проверочных устройств.

4. Измерительные. Служат для передачи соразмерно измененного тока на счетчики, контролирующие потребленную (отпущенную) электроэнергию.

Также трансформаторы тока бывают:

– Наружной установки, предназначенные для монтажа на ОРУ (открытая распределительная установка);

– Для закрытых установок, устанавливаемые в ячейках ЗРУ (закрытая распределительная установка);

– Встраиваемые непосредственно в оборудование. Например, в счетчиках прямого включения есть свои мини ТТ;

Читайте также:
Стальные радиаторы отопления — рейтинг 2020 года и обзор лучших моделей от ведущих производителей

Как проверяют ТТ

Самой главной возможной неисправностью работающего трансформатора тока, является пробой изоляции. Поэтому рабочие ТТ подвергаются периодической проверке Такими службами как:

Служба изоляции и Релейная служба.

При этом Служба изоляции производит проверку ТТ повышенным напряжением, а релейная служба проверяет ВАХ (Вольт –Амперная Характеристика), проверяет коэффициент трансформации. И если испытания показали, что ТТ неисправен, то он бракуется и меняется на новое того же номинала. В противном случае составляется протокол проверки:

Заключение

Широта использования этого изделия говорит о том, что трансформаторы тока являются неотъемлемой и, несомненно, важной частью всей энергетической системы. Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

Трансформаторы тока – принцип работы и применение

Трансформаторы тока

При эксплуатации энергетических систем часто возникает необходимость преобразования определенных электрических величин в подобные им аналоги с пропорционально измененными значениями. Это позволяет моделировать определенные процессы в электроустановках, безопасно выполнять измерения.

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующего в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

Он преобразует первичную величину вектора тока, протекающего в силовой цепи, во вторичное пониженное значение с соблюдением пропорциональности по модулю и точной передачей угла.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Прицнип работы трансформатора тока

Через силовую первичную обмотку с числом витков w1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки w2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации . Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой — классом точности трансформатора тока .

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Учебный плакат “Измерительные траснформаторы”:

Измерительные трансформаторы

Опасные факторы при работе трансформатора тока

Возможность поражения высоковольтным потенциалом при пробое изоляции

Поскольку магнитопровод ТТ выполнен из металла, обладает хорошей проводимостью и соединяет между собой магнитным путем изолированные обмотки (первичную и вторичную), то возникает повышенная опасность получения электротравм персоналом или повреждения оборудования при нарушениях изоляционного слоя.

С целью предотвращения таких ситуаций используется заземление одного из вторичного выводов трансформатора для стекания через него высоковольтного потенциала при авариях.

Эта клемма всегда имеет обозначение на корпусе прибора и указывается на схемах подключения.

Возможность поражения высоковольтным потенциалом при разрыве вторичной цепи

Выводы вторичной обмотки маркируют «И1» и «И2» так, чтобы направление протекающих токов было полярным, совпадало по всем обмоткам. При работе трансформатора они всегда должны быть подключены на нагрузку.

Объясняется это тем, что проходящий по первичной обмотке ток обладает мощностью (S=UI) высокого потенциала, которая трансформируется во вторичную цепь с малыми потерями и при разрыве в ней резко уменьшается составляющая тока до значений утечек через окружающую среду, но при этом значительно возрастает падение напряжения на разорванном участке.

Потенциал на разомкнутых контактах вторичной обмотки при прохождении тока в первичной схеме может достигать нескольких киловольт, что очень опасно.

Поэтому все вторичные цепи трансформаторов тока постоянно должны быть надежно собраны, а на выведенных из работы обмотках или кернах всегда устанавливаются шунтирующие закоротки.

Читайте также:
Утепление перекрытия холодного чердака эковатой

Конструкторские решения, используемые в схемах трансформаторов тока

Любой трансформатор тока, как электротехническое устройство, предназначен для решения определенных задач при эксплуатации электроустановок. Промышленность выпускает их большим ассортиментом. Однако, в некоторых случаях при усовершенствовании конструкций бывает проще использовать готовые модели с отработанными технологиями, чем заново проектировать и изготавливать новые.

Принцип создания одновиткового ТТ (в первичной схеме) является базовым и показан на картинке слева.

Принципиальные схемы конструкций трансформаторов тока

Здесь первичная обмотка, покрытая изоляцией, выполнена прямолинейной шиной Л1-Л2, проходящей через магнитопровод трансформатора, а вторичная намотана витками вокруг него и подключена на нагрузку.

Принцип создания многовиткового ТТ с двумя сердечниками, показан справа. Здесь берется два одновитковых трансформатора со своими вторичными цепями и через их магнитопроводы пропускается определенное количество витков силовых обмоток. Таким способом не только усиливается мощность, но дополнительно увеличивается количество выходных подключаемых цепочек.

Три этих принципа могут быть модифицированы различными способами. Например, применение нескольких одинаковых обмоток вокруг одного магнитопровода широко распространено для создания отдельных, независимых друг от друга вторичных цепей, которые работают в автономном режиме. Их принято называть кернами. Таким способом подключают различные по назначению защиты выключателей или линий (трансформаторов) к токовым цепям одного трансформатора тока.

В устройствах энергетического оборудования работают комбинированные трансформаторы тока с мощным магнитопроводом, используемом при аварийных режимах на оборудовании, и обычным, предназначенным для замеров при номинальных параметрах сети. Обмотки, навитые вокруг усиленного железа, используют для работы защитных устройств, а обычные — для измерений тока или мощности/сопротивления.

Их так и называют:

защитными обмотками, маркируемыми индексом «Р» (релейные);

измерительными, обозначаемыми цифрами метрологического класса точности ТТ, например, «0,5».

Защитные обмотки при нормальном режиме работы трансформатора тока обеспечивают измерение вектора первичного тока с точностью 10%. Их по этой величине так и называют — «десятипроцентными».

Принцип определения точности работы трансформатора позволяет оценить его схема замещения, показанная на картинке. В ней все значения первичных величин условно приведены к действию во вторичных витках.

Погрешности трансформаторов тока

Схема замещения описывает все процессы, действующие в обмотках с учетом энергии, затрачиваемой на намагничивание сердечника током I.

Построенная на ее основе векторная диаграмма (треугольник СБ0) свидетельствует, что ток I2 отличается от значений I’1 на величину I нам (намагничивания).

Чем выше эти отклонения, тем ниже точность работы трансформатора тока. Чтобы учесть ошибки измерения ТТ введены понятия:

относительной токовой погрешности, выражаемой в процентах;

угловой погрешности, вычисляемой длиной дуги АБ в радианах.

Абсолютную величину отклонения векторов первичного и вторичного тока определяет отрезок АС.

Общепромышленные конструкции трансформаторов тока выпускаются для работы в классах точности, определяемых характеристиками 0,2; 0,5; 1,0; 3 и 10%.

Практическое применение трансформаторов тока

Разнообразное количество их моделей можно встретить как в маленьких электронных приборах, размещенных в небольшом корпусе, так и в энергетических устройствах, занимающих значительные габариты в несколько метров. Они разделяются по эксплуатационным признакам.

Классификация трансформаторов тока

По назначению их разделяют на:

  • измерительные, осуществляющие передачу токов на приборы измерения;
  • защитные, подключаемые к токовым цепям защит;
  • лабораторные, обладающие высоким классом точности;
  • промежуточные, используемые для повторного преобразования.

При эксплуатации объектов используют ТТ:

наружного монтажа на открытом воздухе;

для закрытых установок;

встроенные в оборудование;

накладные — надеваемые на проходной изолятор;

переносные, позволяющие делать замеры в разных местах.

По величине рабочего напряжения оборудования ТТ бывают:

высоковольтными (более 1000 вольт);

на значения номинального напряжения до 1 киловольта.

Также трансформаторы тока классифицируют по способу изоляционных материалов, количеству ступеней трансформации и другим признакам.

Для работы цепей учета электрической энергии, измерений и защит линий или силовых автотрансформаторов используются выносные измерительные трансформаторы тока.

На фото ниже показано их размещение для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Выносные трансформаторы тока ОРУ 110 кВ

Эти же задачи выполняют трансформаторы тока на ОРУ-330 кВ, но, учитывая сложность более высоковольтного оборудования, они имеют значительно большие габариты.

Трансформаторы тока ВЛ 330 кВ

На энергетическом оборудовании часто применяют встроенные конструкции трансформаторов тока, которые размещают прямо на корпусе силового объекта.

Силовой трансформатор 110/10 кВ

Они имеют вторичные обмотки с выводами, размещаемыми вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов ТТ проложены к прикрепленным здесь же клеммным ящикам.

Читайте также:
Что выбрать — газобетон или пенобетон?

Конструкция встроенного трансформатора тока

Внутри высоковольтных трансформаторов тока чаще всего в качестве изолятора используется специальное трансформаторное масло. Пример такой конструкции показан на картинке для трансформаторов тока серии ТФЗМ, рассчитанной на работу при 35 кВ.

Трансформатор тока ТФЗМ-35 кВ

До 10 кВ включительно используются твердые диэлектрические материалы для изоляции между обмотками при изготовлении корпуса.

Примером может служить трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.

Трансформатор тока ТПЛ-10

Пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ демонстрирует упрощенная схема.

Вторичные токовые цепи

Неисправности трансформатора тока и способы их отыскания

У включенного под нагрузку трансформатора тока может нарушиться электрическое сопротивление изоляции обмоток или их проводимость под действием теплового перегрева, случайных механических воздействий либо из-за некачественного монтажа.

В действующем оборудовании чаще всего повреждаются изоляция, что приводит к межвитковым замыканиям обмоток (снижению передаваемой мощности) или возникновению токов утечек через случайно созданные цепи вплоть до КЗ.

С целью выявления мест некачественного монтажа силовой схемы периодически проводятся осмотры работающей схемы тепловизорами. На их основе своевременно устраняются дефекты нарушенных контактов, уменьшается перегрев оборудования.

Проверку отсутствия межвитковых замыканий осуществляют специалисты лабораторий РЗА:

снятием вольтамперной характеристики;

прогрузкой трансформатора от постороннего источника;

замерами основных параметров в рабочей схеме.

Они же анализируют величину коэффициента трансформации.

При всех работах оценивается соотношение между векторами первичных и вторичных токов по величине. Отклонения их по углу не осуществляется из-за отсутствия высокоточных фазоизмерительных устройств, которые применяются при поверках трансформаторов тока в метрологических лабораториях.

Высоковольтные испытания диэлектрических свойств возложены на специалистов лаборатории службы изоляции.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Читайте также:
Чем покрасить тротуарную плитку своими руками

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.
  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
    • До 1 кВ;
    • Свыше 1 кВ.

    Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

    Расшифровка маркировки

    Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

    • Т — трансформатор тока;
    • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
    • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
    • ВТ — встроенный в конструкцию силового трансформатора;
    • Л— со смоляной (литой) изоляцией;
    • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
    • Ф — с надежной фарфоровой изоляцией;
    • Ш — шинный;
    • О — одновитковый;
    • М — малогабаритный;
    • К — катушечный;
    • 3 — применяется для защиты от последствий замыкания на землю;
    • У — усиленный;
    • Н — для наружного монтажа;
    • Р — с сердечником, предназначенным для релейной защиты;
    • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
    • М — маслонаполненный. Применяется для наружной установки.
    1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
    2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
    3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
    4. после позиции дробных символов — код варианта конструкционного исполнения;
    5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
    6. цифра на последней позиции — категория размещения.

    Схемы подключения

    Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

    Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

    При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

    Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

    Схема «неполная звезда» применяется для двухфазного соединения.

    В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

    Основные схемы подключения:

    • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
    • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
    • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
    • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

    Технические параметры

    Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

    Коэффициент трансформации

    Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

    У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

    Класс точности

    Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

    Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

    О назначении

    Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

    Трансформаторы тока назначение и принцип действия

    Для измерения величин с большими значениями применяются трансформаторы тока. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

    Что такое трансформатор тока?

    К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

    Трансформаторы тока назначение и принцип действия

    Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

    Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

    • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
    • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

    Назначение трансформаторов

    Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

    Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

    Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

    Принцип работы

    Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

    При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

    Классификация трансформаторов тока

    Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

    Трансформатор тока: конструкция, схемы и его виды

    Трансформатор тока — это электротехнический или электромагнитный инструмент, который предназначен для изменения тока с больших величин на меньшие (то есть на более удобные для его эксплуатации).

    Для эффективного использования защитных систем линий электропередач необходим ее тотальный контроль. К слову, данный контроль осуществляется не с помощью простого трансформатора, а благодаря трансформатору тока, который способен отслеживать и регулировать величину тока первичных и вторичных обмоток.

    Линии электропередач

    Конструкция и устройство трансформатора тока

    Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.

    Трансформатор тока в разрезе

    Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись. При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.

    В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.

    Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).

    Устройство измерительного трансформатора тока

    Схема трансформатора тока

    Принципиальные схемы конструкций трансформаторов

    Схема трансформатора тока состоит из следующих важных элементов:

    1. Нескольких магнитных проводов;
    2. Первичной обмотки;
    3. Вторичной обмотки;
    4. Клеммов;
    5. Выводов;
    6. Стального сердечника;
    7. Реле;

    Обмотки трансформатора тока располагаются на повальном сердечнике (что играет роль в возникновении явления электромагнитной индукции).

    Если говорить о сердечнике, то он выполняется при помощи электротехнического материала и играет роль магнитного провода.

    Сердечник из стальных листов

    Клеммы, в свою очередь, имеющие определенную маркировку, главным образом обеспечивают процесс входа и выхода тока с первичной и вторичной обмоток.

    А вот реле трансформатора тока, подключенное к кабелю, обеспечивает правильное функционирование устройства, снижая величину тока до необходимого значения.

    Подключение трансформатора тока

    Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:

    Схема 1

    Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.

    Схема 1

    Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
    Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.

    Схема 2

    Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать. Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание — электрическая цепь имеет нейтральную заземленность).

    Схема 2

    Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).

    Схема 3

    Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.

    Схема 3

    Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных — означает дифференциальных, которые отличаются своей селективностью и быстротой действия).

    Схема 4

    И, наконец, последний — четвертый вид схемы.

    Схема 4

    Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.

    Отключение также происходит путем заземления.

    Основная схема подключения измерительного трансформатора тока

    Плавно мы подошли к основной схеме подключения измерительного трансформатора тока.

    Схема подключения измерительного трансформатора тока

    На рисунках 1 и 2 трансформатор имеет обозначение “TA” с индексами и представлен в схемах с двухфазными и трехфазными обмотками. Стоит уточнить, что имея формы полной звезды и неполной, трансформаторы включены в изолированную, а самое главное нейтральную сеть.

    Кроме того, добавим, что структура подключения этого “TA” применяется для защиты от замыканий цепи, а также регулирования баланса между фазами.

    Принцип работы трансформатора тока

    Принцип работы трансформатора тока основан на принципах электромагнитной индукции, которая действует в электрическом/магнитном поле. Более подробная информация представлена на рисунке:

    Как работает трансформатора тока

    Он преобразовывает начальное значение векторного тока, проходящего в электрической цепи, во вторичную величину (при этом важно учесть фактор пропорционального равенства между модулем и углом передачи тока).

    Катушка ТТ

    Первичная обмотка устройства, имеющая некое число витков (W1), пропускает через себя ток (I1). Ток, в свою очередь, преодолевает некоторое сопротивление (Z1).

    Рядом с данной катушкой происходит процесс образования магнитного потока (Ф1), регулируемый при помощи перпендикулярно-расположенных магнитных проводов (важное замечание — именно такое расположение может обеспечить минимальную потерю во время преобразования электроэнергии).

    Внутренности трансформатора тока

    После пересечения перпендикулярных витков (W2) обмотки, (Ф1) — магнитный поток формирует силу электрического движения (Е2). Эта сила вызывает возникновение тока (I2) на обмотке (вторичной). А вот I2, который подключен к нагрузке выхода (Zн), преодолевает Z2 — сопротивление, и способствует образование меньшего напряжения на концах электроцепи.

    Значение K 1 — коэффициент трансформации — определяется выражением: I1 / I2 (отношение первого вектора ко второму). Величина этого отношения вычисляется в начальных построениях проектирования устройства.

    Различия между истинными показателями модели и расчетным результатом объясняется важным аспектом метрологии, которым является вид класса точности устройства.

    Важно — на практике ток во вторичной обмотке не является постоянным, именно это определяет значение K1 . К примеру, его отношение 10000/50 обозначает следующее: во время прохода электротока по области первичной обмотки единица килоампера области вторичной обмотки приравнивается к величине пятидесяти килоампер.

    Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока. Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки.

    Во время эксплуатации трансформатора тока нельзя забывать про возникновение нежелательных проблем, одной из которых является пораженческая способность пробоя изоляции (из-за высокого потенциала).

    Так как магнитный провод трансформатора тока имеет металлический компонент в строении, у него есть отличные свойства проводимости, которые помогают ему соединить между собой первичную и вторичную обмотки.

    Несмотря на то, что обмотки изолированы, у того, кто эксплуатирует трансформатор, все равно присутствует риск получения повреждений и травм от этого электрического прибора.

    Для того, чтобы риски минимизировать, необходимо использовать заземление какого-либо вывода устройства (для предотвращения короткого замыкания из-за высокого потенциала). Кроме того, нужно сказать и про возможный разрыв на вторичной обмотке цепи из-за перенапряжения устройства.

    Трансформатор

    Говоря о принципах работы трансформатора тока, скажем и о том, что к его главному предназначению следует отнести решение эксплуатационных задач электротехнических систем, ведь наша промышленность готовит огромный ассортимент выпуска электрических установок, которые не всегда обладают 100-процентным коэффициентом полезности.

    А трансформатор способен этот КПД увеличить благодаря усовершенствованию схем и конструкций.

    Идеальный трансформатор тока: уравнение

    Идеальный трансформатор тока представляет из себя электромагнитное устройство, которое способно не допускать потерю энергию во время увеличения напряжения и во время рассеивания обмотков.

    Итак, уравнение для такого трансформатора будет выглядеть следующим образом:

    • U2/U1 — отношение напряжения на конце вторичной обмотки к напряжению первичной;
    • N2/N1 — отношение числа витков вторичной обмотки к числам витков первичной;
    • I1/I2 — отношение тока первичной цепи ко вторичной;
    • n — трансформационный коэффициент.

    Виды трансформаторов тока

    В современном мире существует огромное различных видов трансформаторов, которых можно классифицировать сразу по нескольким признакам.

    Виды трансформаторов тока

    По месту установки

    Начнем с видов трансформаторов, которые классифицируются по месту установки:

    1. Специальные (используются в транспортных средствах и производственных предприятиях);
    2. Встроенные (устанавливаются в конструкции других электрических приборах);
    3. Внутренние (используются в закрытых комплексных предприятиях);
    4. Наружные (устанавливаются на открытом воздухе);
    5. Переносные (универсальные, можно устанавливать и на открытом воздухе, и в закрытых лабораториях).

    По способу установки

    Продолжим видами трансформаторов, которые классифицируются по способу установки:

    1. Опорные (одноступенчатые и многоступенчатые устройства);
    2. Проходные (образуют металлическую подставку и устанавливаются на производственных станциях).

    По типу витков

    Подошла очередь видов тех трансформаторов, которые классифицируются по типу витков:

    1. С одним витком (имеют форму стержня и используются в производственных предприятиях);
    2. Со множеством витков (имеют форму петли и устанавливаются в многофазных системах и конструкциях);
    3. Без первичной обмотки (имеют форму шин и применяются в качестве контроля фаз электрической сети ).

    По назначению

    Заканчиваем видами трансформаторов, которые классифицируются по различным назначениям:

    1. Лабораторные (способны обеспечить высокую точность величин);
    2. Измерительные (являются приборами учета);
    3. Многоступенчатые (имеют сложное строение, поэтому способны устроить процесс трансформации электротока);
    4. Промежуточные (способны преобразовать значение тока первичной обмотки или вторичной);
    5. Защитные.

    Достоинства трансформатора тока

    Много трансформаторов

    Трансформаторы тока имеют огромное количество достоинств, о которых следует рассказать. Вот главные:

    1. Способность регулировать электрический ток в цепи;
    2. Простая изоляция (гарантия безопасности во время эксплуатации);
    3. Точность действий и простота использования прибора;
    4. Большой охват и интервал измерения электрического тока;
    5. Не самые большие габариты (в зависимости от вида);
    6. Не самая существенная масса (в зависимости от вида);
    7. Развязка первичной цепи;
    8. Развязка вторичной цепи;
    9. Практически полная независимость от внешней температуры;
    10. Способность выдерживать процесс перенапряжения;
    11. Способность быстрого восстановления после короткого замыкания цепи;
    12. Способность передавать даже электрический импульс.

    Применение трансформатора тока

    Главной особенностью трансформатора является его способность преобразовать ток из одной величины в другую. Этим и можно объяснить его широкое применение в современном обществе.

    Трансформатор тока используется в электрических сетях для передачи электроэнергии на длинный расстояния с минимальными рисками возникновения замыканий или перенапряжений.

    Также данное устройство применяют в электрических источниках питания.

    Линии электропередач около полей

    Кроме того, “ТТ” способен обеспечит некий контакт с землей и благодаря эффекту заземления обезопасить окружающих от переизбытка тока.

    Если говорить о быте, то трансформатор тока используется в радиоэлектронике, в сварочных аппаратах и другой электротехнике.

    Различные элементы радиоэлектроники

    Где приобрести трансформатор тока?

    Как вы уже поняли из ранее прочитанного материала — трансформатор тока является очень востребованным прибором. Его широкое применение, прежде всего, объясняется качественными характеристиками, которые позволяют устройству выполнять различные электротехнические “задачи”.

    Итак, трансформатор тока может понадобиться любому из нас. На случай, если это коснется и вас, то посоветую вам приобрести данный электромагнитный прибор (или его аналог) на Aliexpress (жми). Там, как всегда, хороший и богатый выбор, а также выгодные цены на товары.

    Что такое трансформатор: устройство, принцип работы, схема и назначение

    Что такое трансформатор: устройство, принцип работы, схема и назначение

    Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

    Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

    Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

    Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

    Назначение трансформаторов

    Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

    Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

    Гигантский трансформатор

    Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

    Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

    • импульсные трансформаторы;
    • силовые трансформаторы;
    • трансформаторы тока.

    Принцип работы трансформатора

    Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

    Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

    Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

    Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

    Принцип устройства трансформатора

    Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

    Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

    Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

    назначение и принцип работы трансформатора

    Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

    Идеальный трансформатор

    Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

    Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

    Трансформатор формула

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Потери энергии в трансформаторе

    Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

    В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

    Сухие трансформаторы серии ТСЛ

    Конечно, трансформаторы не так просты, как может показаться на первый взгляд – ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

    Трансформатор тока: принцип работы и использование

    Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующим в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

    ТТ применяются для измерения тока в приборах электроэнергетических систем. Они обеспечивают безопасность процедуры, так как позволяют изолировать первичную цепь с высоким напряжением от измерительной цепи. Кроме этого, трансформаторы позволяют выполнить моделирование определенных процессов и обеспечивают защиту электроустановок.

    Принцип работы

    Действие устройств базируется на явлении электромагнитной индукции. При подаче напряжения в ТТ через витки первой обмотки проходит переменный ток, который в дальнейшем формирует переменный магнитный поток. В результате большие величины преобразуются в те значения, которые безопасны и удобны для измерения.

    Первичная обмотка запускается медленно и последовательно, чаще все она представляет собой алюминиевую или медную пластину, реже используются катушки. Для замыкания на нагрузку используется вторичная обмотка, в которой создается ток, его величина пропорциональна потоку в первом элементе.

    Полученный ток проходит по сердечнику и перераспределяется во все обмотки, продуцируя в них электродвижущие силы. При включении в цепь последующих обмоток в их витках также образовывается вторичный ток.

    Конструкция ТТ

    Данные изделия можно встретить как в небольших электронных приборах, так и в значительных по объему энергетических установках. Различия между ними заключаются лишь в габаритах.

    Конструктивно трансформаторы состоят из двух элементов:

    • замкнутый магнитопровод (сердечник);
    • 2 и более обмотки (первичная и вторичные).

    Все детали помещаются в специальный корпус, который служит как защита от механических повреждений.

    Основные характеристики

    Одним из важнейших параметров ТТ является номинальное напряжение, то есть максимальные значения напряжения, при которых устройство может корректно работать. Этот показатель указывается в паспорте трансформатора, средняя цифра составляет от 0,66 до 750 кВ.

    К числу основных параметров ТТ относят и коэффициент трансформации. Он определяется как отношение первичного тока к вторичному.

    Другая важная характеристика систем – номинальный ток первичной сети (протекающий по первичной обмотке). Значение может составлять от 1 А до 40 тысяч А. Показатели вторичного тока всегда равняются 1 А или 5 А, по заказу изготавливаются модели с 2 А и 2,5 А.

    Еще два важных параметра устройств – это электродинамическая и термическая стойкость. Первая – характеризует максимальную амплитуду тока короткого замыкания. Если сказать проще, то это способность трансформатора противостоять разрушающему воздействию короткого замыкания.

    Термическая стойкость – это максимальный показатель для короткого замыкания, которое система может выдержать за определенный промежуток времени и не пострадать от высоких температур.

    Виды трансформаторов тока по назначению

    Выделяют следующие разновидности:

    • Измерительные. Подобные устройства служат для передачи токов на специальные приборы измерения. Используются, если прямое подключение измерителей невозможно или небезопасно. ТТ рассчитываются таким образом, чтобы минимально влиять на первичную цепь и минимизировать любые искажения силы тока.
    • Промежуточные. Применяются в целях релейной защиты, обеспечивают изоляцию тока в первичной и вторичной обмотке.
    • Лабораторные. Отличаются повышенной точностью, предназначаются для моделирования определенной силы тока.
    • Защитные. Подключаются к токовым цепям защиты. Нередко номинальный ток таких систем существенно отличается от тока сети. Производители присваивают защитным устройствам определенный класс точности, что позволяет использовать их в качестве измерительных.

    Классификация по способу исполнения

    Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

    • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
    • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
    • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

    Варианты установки трансформаторов

    Помимо назначения и способа исполнения, трансформатор тока можно разделить на несколько видов в зависимости от способа монтажа. Выделяют следующие устройства:

    • Переносные. Мобильные модели, которые служат для диагностических и лабораторных испытаний.
    • Накладные. Применяются для установки сверху на проходные изоляторы, отличаются компактностью и имеют специальные крепления для монтажа.
    • Встраиваемые. Такие изделия встроены в электрические машины или коммутационные аппараты (например, в генераторы или похожие устройства).

    Дополнительно выделяют трансформаторы для наружной установки (нужны для ОРУ – открытых распределительных устройств) и внутреннего монтажа (для ЗРУ – закрытых распределительных устройств).

    Независимо от типа и способа монтажа, все устройства, кроме встроенных, имеют специальную контактную площадку. С ее помощью подсоединяется заземляющий проводник и зажим, что, в конечном счете, максимально упрощает процесс установки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: