Устройство и виды светодиодных лампочек на 220 В

Виды светодиодных ламп и характеристики цоколей

Ассортимент светодиодных ламп необычайно многообразен и многие разновидности led-ламп неизвестны большинству людей. Поэтому у покупателей возникает много вопросов при необходимости подобрать светодиодные лампы для решения своих задач. Задаваемые вопросы касаются подбора моделей по форме, параметрам, опции управления. Большой интерес вызывает возможность замены люминесцентных и галогенных ламп на лед-аналоги с соответствующим цоколем.

В этой статье мы расскажем о разновидностях светодиодных ламп, которые можно найти в продаже, а также об основных типах цоколей, позволяющих установить лед-лампу в специализированный светильник или обычную люстру.

Классификация светодиодных ламп по конструкции и параметрам

Для удобства понимания темы классифицируем светодиодные лампы по характеристикам, наиболее часто упоминаемым нашими покупателями при обращении к менеджерам «Ледрус».

Форма
  • кукуруза – напоминают кукурузный початок с множеством зерен, представляющих собой smd светоизлучающие диоды. Светодиоды располагаются по всей окружности, излучая свет во все стороны на 360 градусов. Угол рассеивания составляет 300°. Применение – светильники с горизонтальным расположением лампочек, точечное освещение при наличии затеняющего плафона;
  • груша – самая распространенная форма, схожая с обычными лампами накаливания. Используется в люстрах с верхней ориентацией патрона. При обратной (нижней) ориентации наблюдается затенение помещения;
  • свеча – предназначены, в основном, для ночников, настольных ламп и торшеров. Отличаются небольшой мощностью, яркостью и углом рассеивания. Выпускаются модификации «свеча на ветру» и «витая свечка»;
  • шар – превосходят «груши» по светораспределению за счет большего угла рассеивания светового потока (150-360 градусов);
  • гриб (рефлектор) – оснащены отражателем, создающим световое излучение высокой плотности. Находят применение в источниках направленного света;
  • спот – схожи с рефлекторами, отличаясь от них уплощенной торцевой частью. Используются только в точечных светильниках, встраиваемых в натяжной потолок;
  • капсула – миниатюрные led-лампы, предназначенные для замены галогенных ламп со штырьковым цоколем;
  • линейные (трубки) – современная замена люминесцентных ламп Т8 длиной 60/90/120 см, изготавливаемая на основе светодиодов, помещенных в поликарбонатную трубку (прозрачную или матовую). Можно устанавливать в традиционные люминесцентные светильники с небольшой их доработкой (удаление стартера, дросселя, конденсатора).
Тип светодиодов
  • SMD – светодиоды поверхностного монтажа, изготавливаемые в виде однокристального или трехкристального чипа, установленного на подложке. Излучаемый свет фокусируется специальной линзой. Отличаются по типоразмеру, потребляемой мощности, яркости.
  • COB-диоды – новое технологическое решение, заключающееся в монтаже любого числа светодиодов на одной плате и покрытии их однородным люминофорным слоем. Плата размещается на керамической или алюминиевой подложке. Преимуществом COB-диодов является сочетание низкой стоимости, повышенной герметичности, увеличенного срока службы, улучшенной равномерности светового потока, лучшего теплоотвода.
  • филаментные нити – производятся по инновационной технологии из мелких бескорпусных кристаллов, последовательно соединяемых в нитевидную структуру. Филаментные нити устанавливаются на стеклянных подложках, равномерно распределяющих световой поток на 360°. Вариант нанесенного люминофорного покрытия определяет цветовую температуру излучаемого света. Достоинства – увеличение яркости свечения и энергоэффективности ламп.
Мощность и яркость

Светодиодные лампы превосходят все другие аналоги по экономичности. Они потребляют меньшую мощность при одинаковой яркости света с люминесцентными, галогенными и лампами накаливания. Наиболее востребованы модели в мощностном диапазоне 3-25 Ватт. Для удобства пользователей на упаковке указывается соответствие мощностей led-лампы и накаливания. Эти данные сведены в таблице:

Мощность LED лампы, Вт Мощность люминесц.лампы, Вт Мощность лампы накаливания, Вт
1 5 10
3 15 25
5 25 40
6 30 50
7 35 60
8 40 65
9 45 75
10 50 80
12 60 100
15 75 125
18 90 160
20 100 175
23 115 190
25 120 210

Яркость ламп характеризуется интенсивностью светового потока. Наиболее наглядно эта характеристика отражена в следующей таблице:

LED лампы, Вт Люминесц.лампы, Вт Лампы накаливания, Вт Световой поток, Лм
3 20 250
5 5 40 400
8 9 60 700
10 10 75 900
14 15 100 1200
18 20 150 1800
25 30 200 2500

Таблица сравнения мощностей разных видов ламп

Температура светового потока
  • холодная – свыше 5 500К. Рекомендована только для рабочих и подсобных помещений;
  • нейтральная – 4 000-5 000К. Подходит как для офиса, так и для кухни, ванной, кладовки;
  • теплая – 2 500-3 500К. Самый оптимальный вариант для комнат в квартире и доме.
Управление

Диммируемые – специализированные лед-лампы, совместимые с электронным регулятором яркости (диммером). Интенсивность излучаемого света меняется в больших пределах за счет регулировки рабочего тока. Производители отмечают этот тип ламп специальным значком на упаковке.

Диммируемая лампа

Вторичная оптика

Матовая и прозрачная – большинство светодиодных ламп производятся с матовой колбой, создающей лучшую равномерность и однородность светового потока. Они оптимально подходят для светильников открытого типа, не имеющих дополнительного рассеивающего элемента. Прозрачные лед-лампы обычно устанавливают в люстры с закрытыми плафонами, торшеры, настольные лампы с абажуром.

Прозрачная или матовая колба лампы

Типоразмеры с обозначением радиуса

MR16 – представляет собой конструкцию из колбы и многогранного стеклянного отражателя (MR, Multifaceted Reflector) радиусом 25 мм. Размер 16 дюймов. Конус излучаемого светового потока имеет угол на своей вершине 7-60 градусов.

MR16

AR111 – лампы этого типоразмера, предназначенные для встраиваемых карданных светильников, пришли на смену металлогалогенным лампам. Устанавливаются в барные стойки, иногда в точечные потолочные светильники.

AR111

Какие цоколи используются в светодиодных лампах

Цоколь является важным параметром при выборе светодиодной лампы. От его типа зависит совместимость led-лампы со светильником. Производители светотехнической продукции применяют маркировку цоколей, обозначаемую латинской буквой. Например, E – цоколи резьбового типа, G – штырьковые.

Цоколи ламп

Рассмотрим наиболее популярные типы цоколей:

E14 – резьба диаметром 14 мм. Используется, в основном, в небольших лампочках «миньон» и «свеча» мощностью до 3 Ватт.

E14

E27 – вариант для стандартных патронов, имеющих резьбу 27 мм. Подходит для всех классических люстр и светильников, которые выпускались под традиционные энергосберегающие и лампы накаливания. Широкая линейка мощностей 4-25 Ватт.

Е27

E40 – модификация с резьбовым цоколем увеличенного диаметра. Отличаются большими размерами, дополнительной линзой, увеличенным количеством светодиодов. Область применения: уличные фонарные столбы для освещения тротуара, тоннеля, дорожной магистрали.

Е40

G4 – конструкция цоколя выполнена в виде двух штырьков на расстоянии 4 мм друг от друга. Используются в ограниченной линейке светильников и декоративных люстр как замена галогеновых источников света.

G4

GU5.3 – популярное решение для лед-ламп, имеющих типоразмер MR16и используемых для декоративного освещения, витринной подсветки. Двухштырьковое исполнение.

GU5.3

GU9 – штырьковая модификация с двумя проволочными петельками. Находит применение в осветительных приборах для создания зон дизайнерской акцентной подсветки.

Читайте также:
Шторы в маленькую спальню+фото

GU9

GU10 – цоколь с двумя штыревыми контактами, утолщенными на концах для жесткой фиксации внутри патрона.

GU10

G13 – цоколь с двухштырьковой контактной группой предназначен для светодиодных ламп-трубок Т8, которые устанавливаются в офисные светильники для подвесных потолков «Армстронг».

G13

G53 – штырьковый вариант для led-ламп, пришедшим на смену галогенным аналогам в акцентном освещении отдельных участков ювелирного магазина, бутика, торгового зала.

G53

GX53 – еще одна штырьковая модификация с поворотной фиксацией в замке led-светильника, устанавливаемого на подвесном или натяжном потолке.

Светодиодная лампа: устройство, принцип работы, виды

Среди владельцев частных домов, дач и квартир все чаще и чаще в обиходе используется светодиодная лампа. Это самые новые виды осветительных приборов, которые привнесли принципиально новые варианты эксплуатации электрооборудования. Они относятся к категории энергосберегающих лампочек, но помимо этого обладают и другими весомыми преимуществами. Далее мы более детально разберемся в устройстве и принципах работы светодиодных ламп.

Устройство и принцип работы

Чтобы разобраться в принципиальных отличиях светодиодной лампы, как электрического оборудования, в сравнении с другими приборами, следует детально рассмотреть ее конструктивные особенности и назначение каждого из элементов.

Конструкция светодиодной лампы

Рис. 1. Конструкция светодиодной лампы

Конструктивно led лампочка состоит из:

  • Светодиодов – в старых моделях присутствовал только один кристалл, излучавший свет, однако эта технология имела ряд сложностей, поэтому современные модели включают несколько единиц или целую матрицу.
  • Колбы или рассеивателя — может изготавливаться из стекла или полимера. Предназначен для боле плавного перераспределения светового потока от точечных источников в окружающее пространство.
  • Стабилизатора тока или драйвера – предназначен для преобразования поступающей на контакты диодной лампочки электрической величины, не зависимо от уровня напряжения и мощности, в строго установленную величину электротока.
  • Цоколя – предназначен для соединения светодиодных ламп с электрической сетью. Чаще всего используются стандартные цоколя E и G, реже бывают другие конструкции.

Дополнительно лампа содержит полимерный или металлический корпус. Однако в led светильниках может быть встроенная матрица, и она монтируется в светодиодный прожектор напрямую.

Принцип действия светодиодной лампы заключается в такой последовательности передачи электрической энергии:

  • При помещении электролампы в патрон и подаче на нее переменного напряжения сети светодиодный источник получает питание.
  • Как видите на рисунке 2, переменное напряжение сети в светодиодной лампе изначально поступает на выпрямительный мост, где преобразуется в выпрямленное. Конденсатор, установленный после моста дополнительно сглаживает пульсации.
  • Выпрямленное напряжение переходит далее от выпрямительного устройства на микроконтроллер, контролирующий величину вырабатываемого электротока.
  • Затем питание поступает на импульсный трансформатор, который и выдает электрическое напряжение непосредственно к источнику освещения.
  • При достижении нужного уровня электротока происходит свечение светодиодов.

В данном примере приведен принцип действия и конструкция светодиодной лампы с гальванической развязкой. Это более дорогой, но и более надежный способ предохранить человека от поражения электротоком. На практике случаются и более дешевые светодиодные лампы, их продукция использует более дешевые платы драйвера или способы преобразования, которые не обеспечивают должного уровня безопасности и продолжительности эксплуатации.

На сегодняшний день производители светодиодных ламп предоставляют потребителям довольно широкий выбор разнообразных моделей, призванных удовлетворить потребности даже самых требовательных покупателей. Поэтому выделяют несколько параметров, по которым и различают виды светодиодных ламп:

  • тип цоколя;
  • форма колбы и самой лампы;
  • напряжение питания;
  • тип светодиодов и способ их размещения;
  • световое излучение – мощность и теплота.

У светодиодных ламп часто встречается цоколь для патронов E27 – стандартный вариант, используемый в люстрах для освещения помещения и т.д. Также часто встречаются модели E14 с диаметром цоколя 14мм, их еще называют миньонами. В некоторых вариантах встречаются штырьковые цоколи G13, G5, GU10, MR – это варианты под современные софиты и специализированные плафоны в люстрах.

Типы цоколей

Рис. 3. Типы цоколей

Значительно реже встречаются светодиодные лампочки с цоколем B или H, как специализированные варианты для узкопрофильного оборудования.

Если рассматривать вопрос о форме, то можно выделить такие виды:

  • грушеобразная – классический вариант, может использовать как матовый рассеиватель, так и прозрачную колбу, в некоторых моделях совмещается полупрозрачный и непрозрачный корпус;
  • грибовидная – используется в точечных светильниках, так как поверхность, излучающая световой поток сравнивается с корпусом софита;
  • кукуруза – длинная модель с цилиндрическим расположением светодоидов, прекрасно подходит для горизонтального расположения в плафонах, прожекторах уличного освещения и т.д.;
  • свеча – декоративная светодиодная лампа, устанавливаемая в настольные лампы, ночники или подсветки.

Как частные варианты вы можете встретить и другие формы, однако здесь мы рассмотрели наиболее популярные из них.

Форма светодиодных ламп

Рис. 4. Форма светодиодных ламп

По напряжению питания светодиодные лампы подразделяются на те, которые подключаются к бытовой сети 220В, и те, которым требуется низкое напряжение постоянного тока – 24В, 12В.

В зависимости от типа светодиодов, выделяют лампочки с монокристаллическими панелями, где обеспечивается точечное освещение за счет единственного кристалла. Но такие варианты сегодня редко встречаются, чаще используются 8 – 10 и более небольших кристаллов, которые могут отличаться габаритами для разных моделей. Особенно хорошо их видно на светодиодных лентах или лампах с прозрачным стеклом. Но некоторые энергосберегающие технологии используют светодиодные нити в газовой смеси.

По типу светодиодов

Рис. 5. По типу светодиодов

Яркость свечения определяется мощностью светодиодной лампы, чем выше мощность, тем более ярко она будет светить. Для бытовых помещений подойдут модели от 3 до 10Вт, производственным потребуется уже около 20Вт, в уличные светильники устанавливают от 30 до 100Вт. Температуру свечения можно выбрать любую, в зависимости от поставленных задач – от теплой до холодной.

Рис. 6. Температура свечения

Температура свечения

Преимущества и недостатки

Как мы уже отмечали ранее, такой тип осветительных приборов стал популярным за счет значительных преимуществ перед их ближайшими конкурентами. К преимуществам светодиодных ламп относят:

  • Продолжительный срок эксплуатации – от 10 до 100 тысяч часов, в сравнении с лампочкой накаливания, которая может обеспечить только 1 тысячу часов.
  • Куда более эффективная светоотдача – от 90 до 120Лм/Вт, лампы накаливания могут похвастаться лишь 5 – 8Лм/Вт, а люминесцентные светильники 25 – 50Лм/Вт.
  • Обладает широкой гаммой цветовых температур, что делает их использование комфортным для любых помещений и нужд, а RGB светодиодные ленты могут выдавать несколько вариантов цвета свечения.
  • Не боятся разгерметизации и нарушения целостности колбы, в отличии от устройств с нитью накаливания, галогенных ламп и других газосодержащих, будет с тем же успехом светить даже без наружного рассеивателя.
  • Широкий диапазон рабочих температур – светодиодные аналоги не теряют своих характеристик в промежутке от – 60 до + 60°С.
  • Устойчивы к незначительным отклонениям рабочего напряжения от номинального значения.
  • Не выделяют вредных веществ, в отличии от люминесцентных ламп, которые содержат ртуть.
Читайте также:
Традиционная кровать-тахта в стиле классик, популярные формы и цвета

К недостаткам светодиодных ламп следует отнести их относительно высокую себестоимость, но она с лихвой окупается рабочими параметрами и сроком эксплуатации. Также существуют ситуации, когда лампочки накаливания нельзя или нецелесообразно менять на светодиодные модели.

Технические характеристики

Перед выбором конкретного осветительного устройства необходимо определиться с его основными параметрами. Из всего многообразия, которое вам следует учитывать, мы выделим:

  • Мощность – определяет, сколько электрической энергии будет потребляться из сети при работе прибора. Показатель мощности важен как в части расчета за потребленную электроэнергию, так и в части количества получаемого света.
  • Спектр излучения – теплый в пределах 2700 – 3300 К, дневной от 3500 до 6000К, холодный – от 6000К. Этот параметр указывается на упаковке светодиодной лампы.
  • Коэффициент цветопередачи – на изделии маркируется буквами CRI или Ra. Показатель 100 является максимальным – это уровень естественного дневного света, чуть хуже – от 100 до 90 для рабочих зон, лабораторий и т.д. В пределах 90 – 80 обычные жилые помещения, менее 80 подойдут для коридоров, подвалов и некоторых складов.
  • Угол рассеивания и тип потока – могут характеризоваться направленным световым потоком или рассеянным.
  • Уровень светоотдачи – определяет эффективность каждого ватта переработанной электроэнергии по отношению к выработанному световому потоку.

Область применения

Если еще десять – двадцать лет тому назад светодиодные лампы были настоящей диковинкой, то сегодня они стали полноправными фаворитами рынка. Их можно встретить в самых различных сферах человеческой деятельности:

  • В освещении открытых территорий, площадок, парков;
  • Для освещения бытовых и производственных помещений;
  • Создания декоративной подсветки и украшения, как помещений, так и элементов ландшафта;
  • В пожароопасных зонах и особо влажных помещениях;
  • В автомобилях и механизации транспортных средств;
  • Для работы устройств сигнализации, телемеханики и управления.

Но и этот список не является окончательным, за счет развития и совершенствования технологий, светодиодные лампы продолжают расширять область применения.

Почему перегорают светодиодные лампочки в ванной и на кухне? Включил свет на кухне. Небольшой хлопок и перегорела светодиодная лампочка. Заменил — работает. На второй день включаю в ванной, хлопок перегорела и там, заменил — не горит. Проверил индикаторной отверткой, в выключателе горит индикатор, а в патроне в ванной нет. Выключатель двухклавишный в ванную и на кухню. Помогите, пожалуйста, советом.

Подскажите по поводу нынешнего положения с освещением, — в патроне, где индикаторная отвертка показала отсутствие напряжения теперь лампочка не светиться даже после замены? Если это так, то налицо неисправности в электрической цепи на участке от выключателя непосредственно до самой лампы.

В перечень неисправностей следует отнести жилы кабеля, которые могли перегореть, в результате чего образовался разрыв в цепи, распределительная коробка, место подключения электропроводки к люстре, патрон. В любом из этих случаев причиной является плохой контакт, который создает «экстремальные условия» для светодиодов и приводит к их преждевременному перегоранию.

Если же контакт не нарушен и новая лампа нормально горит, возможны и другие причины:

— Превышение номинального напряжения – если лампа рассчитана максимум на 230 В, а в электрической цепи присутствует 245 В, то срок службы сократится.
— Не соответствует мощность лампы и условия эксплуатации по нагреву. Эта причина проявляется при монтаже в закрытый плафон, где лампочка перегревается, в случае использования некачественного радиатора.
— Низкое качество ламп – многие производители обеспечивают доступную цену за счет экономии на комплектующих элементах. В результате используется слабый драйвер, выдающий пульсирующий ток или устанавливаются самые дешевые светодиоды.
— При использовании выключателя с подсветкой, причиной может быть постоянное мерцание осветительного оборудования из-за шунтирования цепи контактов.
— Если светодиодные лампы питаются от пониженного напряжения, то проблемы могут быть и в блоке питания.

Устройство и виды светодиодных лампочек на 220 В

Светододные лампы

Вольфрамовые нити накала постепенно уходят в небытие, им на смену приходят более совершенные и эффективные способы освещения. Заметно популярными становятся светодиодные лампочки на 220 В, которые ещё недавно служили декоративными элементами или просто дополнительными источниками света. Цена на эти устройства стала доступной, что позволило их применять взамен традиционных.

Принцип работы и устройство

Светодиодная (LED) лампа представляет собой корпусное электронное полупроводниковое устройство на основе LED-технологий, предназначено излучать свет под воздействием электрического тока. Первые практически применимые светодиоды появились в 1960-х годах и генерировали излучение в красном спектре видимых для человеческого глаза электромагнитных волн. Более поздние исследования позволили создать оранжевые, жёлтые и синие диоды. Особо сложной технологической задачей было увеличить количество света от этих приборов.

Сам по себе светодиод состоит из полупроводникового кристалла под крышкой прозрачного полимера и двух контактов. Как и обычный диод, пропускает электрический ток только в одном направлении, при прохождении которого электроны в кристалле отдают избыток энергии в виде света.

Каждый такой прибор не излучает белого света, привычного человеческому глазу, и работает от постоянного тока, в то время как в электрической бытовой сети протекает переменный ток с гораздо более высоким напряжением, чем требуется для работы полупроводников. Поэтому светодиодная лампа на 220 вольт — сложное устройство, состоящее из следующих компонентов:

  • одного или нескольких светодиодов;
  • преобразователя напряжения;
  • корпуса с цоколем;
  • оптической части.

Какие светодиодные лампы лучше

Основа для большинства современных ламп — плата с синими светодиодами в комбинации с белым люминофором. Благодаря явлению фотолюминесценции последний преобразует поглощённый свет в излучение с заданным спектром. Этот блок закрыт крышкой из прозрачного пластика, задача которого — рассеивать свет и свести к минимуму блики. При необходимости создания направленного пучка в крышку монтируют линзы и отражатели.

Блок электроники содержит модули преобразования переменного напряжения в постоянное и контроля за преобразованием. Все эти элементы вместе с цоколем объединяет корпус, который одновременно служит теплоотводящим радиатором.

Читайте также:
Установка тумбы с раковиной в ванной своими руками. Установка раковины в ванной комнате с тумбой:

Основные параметры

Совместимость светодиодных ламп 220 В с осветительными приборами, для которых они предназначены, определяется прежде всего цоколем и геометрией корпуса с колбой. Качество работы LED-устройств описывается несколько отличными от традиционных ламп накаливания параметрами.

Мощность и световой поток

Ранее считалось, что для понимания, насколько интенсивен свет от лампочки, достаточно информации о её мощности. Такая логика не подходит к светодиодному освещению. Показатель мощности для LED-устройств лишь определяет текущее потребление и не является значительным.

Обзор светодиодных ламп

Поскольку технологии постоянно улучшаются, соответствие потребляемой энергии и излучаемого количества света меняется от модели к модели. В зависимости от используемой технологии одинаковые по мощности светодиодные устройства могут существенно отличаться по яркости. В качестве точного параметра для определения эффективности LED-приборов используется измерение их светового потока в люменах. Для сравнительного понимания яркости ламп, исполненных в других технологиях, можно опираться на следующий перечень:

  • Традиционные лампы накаливания — 6−14 лм/Вт.
  • Лампы накаливания высокой мощности — 16 лм/Вт.
  • Галогенные лампы — 14−19 лм/Вт.
  • Люминесцентные лампы — 50 лм/Вт.

В случае со светодиодными приборами условно можно считать, что 1 Вт потребляемой мощности у LED по светоотдаче эквивалентен 10-ваттной лампе накаливания. Но подобное соотношение будет эффективным только до 5 Вт. Выше этого значения показатели выделенной мощности у светодиодных лампочек уменьшаются:

  • 4 Вт — около 40 Вт обычной лампы;
  • 6 Вт — LED соответствует стандартной лампе 50 Вт;
  • 7 Вт — около 60 Вт;
  • 8 Вт — не более 66 Вт;
  • 10 Вт — соответствует 70 Вт традиционной лампочки;
  • 12 Вт — сопоставимы с 75 Вт накаливания;
  • 18 Вт — замена 100 Вт классической лампочки.

Эти значения будут справедливыми при условии, что LED-устройства состоят из компонентов высокого качества.

Температура и ширина пучка

Характеристика устройства

Лампа накаливания по своей сути — нагревательный прибор. Лишь 2% электроэнергии она преобразует в свет, который также даёт ощущение тепла. В этом смысле он значительно комфортнее, чем генерируемый LED-приборами — их свет несколько холоднее. Показатель цветовой температуры (измеряется в Кельвинах) помогает визуализировать некоторые сравнения. Например, свет восковой свечи — это 2000 К, а лампа накаливания — 2800 К. К сожалению, это почти недостижимые значения для LED, которые редко работают в диапазоне ниже 3000 К.

Для лучшей ориентации полезным будет такой перечень цветовых температур:

  • 2500 К — очень тёплый свет;
  • 2500—3500 К — немного холоднее, чем у ламп накаливания;
  • 3500—4500 К — нейтральный (например, свет от люминесцентной лампы в лаборатории);
  • 4500—5000 К — прохладный;
  • 5000—6500 К — холодный и неприятный.

Мощность светодиодных ламп

Показатель цветовой температуры не всегда полностью отражает спектральные особенности освещения. Свет от ламп с одинаковой температурой, направленный на один и тот же объект, может вызвать различные искажения отражений, т. е. цвет освещённого предмета будет восприниматься неодинаковым. Степень соответствия цвета освещённого предмета эталонному называют индексом цветопередачи Ra, который определяет это соответствие в диапазоне от 0 до 100.

Человеческому глазу комфортны источники освещения с Ra от 80 до 100. Это не значит, что нужно держаться подальше от уличных фонарей с Ra ниже 80, но говорит о нецелесообразности использования подобных источников дома.

Ширина пучка — ещё один важный показатель для LED, но несущественный для традиционных лампочек. Для большинства приборов, основанных на накале вольфрамовой нити, он практически приближается к 360 градусам, а для светодиодных — это конструктивно заложенный показатель, который редко превышает 180°. Зависимость такова, что чем больше угол, тем сильнее рассеян свет у пучка.

Другие показатели

Согласно стандарту международных кодов IP, степень защиты определяется двумя значениями: от твёрдых предметов (0−6) и от жидких веществ (0−8). В случае со светодиодными лампочками наиболее популярны следующие классы:

Выбор светодиодных ламп для дома

  • IP20 — минимальная защита, обычное применение в помещениях;
  • IP44 — предназначены для работы в осветительных приборах на открытых площадках;
  • IP65 — лампы способны работать на улице без дополнительного укрытия;
  • IP66 — также устойчивы к погодным условиям, но лучше переносят влагу, способны к многократному погружению в воду;
  • IP67 — очень высокая степень защиты, могут работать под водой;
  • IP68 — высшая герметичность, лампы такого класса могут работать на большой глубине.

Преимущества светодиодных ламп

Светодиодные лампы — это прежде всего долговечность, составляющая более 50 тысяч часов. Для того чтобы LED служили так долго, нужно следовать рекомендациям производителя. Они могут указывать на соблюдение определённого температурного режима, губительность соседства с интенсивными источниками лучистого тепла и влаги или на недопустимость нарушения вентиляции лампы. Очень важным параметром, влияющим на срок жизни LED, является устойчивость к частому включению и выключению. В значительной степени это зависит от качества прибора — хорошие лампы именитых производителей способны выдержать до 100 тысяч циклов.

Возможность сопряжения с диммером — также немаловажный показатель для LED. Лампы накаливания не имеют ограничений по установке в приборы с функцией регулировки интенсивности света, а вот среди светодиодных только некоторые модели обладают такой возможностью и зачастую способны работать только с конкретным устройством. Зато производители LED предлагают комплекты ламп с интеллектуальным управлением через смартфоны, позволяющим изменять цвет, интенсивность освещения отдельных ламп и строить сложные световые сцены.

LED-технологии сейчас далеко не новшество. Но использование их всюду взамен галогенных, люминесцентных и традиционных способов освещения только начинается. В течение следующих нескольких лет светодиодные лампы, вероятно, заменят большинство других форм освещения в жилых домах и коммерческих зданиях. Эти приборы не только сокращают затраты на электроэнергию и эксплуатационные расходы, но и предлагают новые возможности для производителей осветительных приборов.

Сага о светодиодных лампах. Часть 3 — как это устроено

В прошлой статье мы провели небольшое сравнение параметров светодиодных (и не только) ламп, в ходе которого убедились, что почти одинаковые на вид, на цвет и на ощупь лампы могут иметь самые разные характеристики, простирающиеся от «очень хорошо» до «отвратительно», причем даже лампы одного производителя могут показывать самое разное качество. Теперь наступило время посмотреть, что внутри этих ламп и разобраться, что делает хорошие лампы хорошими, а плохие – плохими.

Разумеется, все манипуляции автор проводил на свой страх и риск, и потому не несет никакой ответственности за какие-либо возможные последствия для желающих повторить его подвиги.

Читайте также:
Чем выровнять стены под обои и как это правильно сделать своими руками разными материалами

Внимание — много фотографий.

Для удобства продублирую таблицы сравнения из прошлой статьи:

С цоколем E27:

Тип лампы Измеренная мощность, Вт (холодный старт) cos(φ) Kp В целом
ASD 11W 9 0.82 1% Очень хорошо
Gauss 12 W 12 0.62 1% Хорошо
Gauss 6.5 W 6 0.50 1% Приемлемо
SUPRA 11 W 9 0.95 35% Плохо
ASD 7 W 4 0.45 100% Отвратительно

С цоколем E14:

Тип лампы Измеренная мощность, Вт (холодный старт) cos(φ) Kp В целом
Gauss 3W 2 0.60 1% Хорошо
Gauss 6.5W 6 0.95 49% Очень плохо
Wolta 5W 2.2 0.40 68% Отвратительно

Первое, что привлекает внимание – чудесная лампа ASD с коэффициентом пульсаций порядка 100% и измеренной мощностью более чем на 40% меньше заявленной.

При этом она не диммируемая, что могло бы немного извинить такие характеристики. Неужели там внутри стоит… Впрочем нет, давайте разберем и посмотрим.

Ой. Это стекло, что ли? Зачем в светодиодной лампе делать стеклянный баллон? Одна из фишек светодиодов – нечувствительность к ударам. Правильно спроектированной светодиодной лампой практически можно играть в футбол. Стеклянный баллон, разумеется, сводит это преимущество на нет. Неужто стекло дешевле в производстве? Хорошо хоть не порезался. Ну окей, раз оно так, подойдем по-другому.

Стекло тонкое; при механическом повреждении баллон разбивается в малоприятное крошево. Внутри вроде бы есть то ли пленка, то ли напыление, но оно как-то слабо помогает. Да и что мешало сделать баллон из пластика?

Внутри видим плату с алюминиевым основанием (ну хоть это хорошо) с горстью светодиодов на ней. А что там с драйвером?

Да, как я и боялся предположить вначале, внутри стоит классическая схема с гасящим конденсатором. Кто не знает – есть такой способ питания нагрузок от сети, историей уходящий в глубину пятидесятых годов (да-да). Принцип его основывается на том, что конденсатор в цепи переменного тока обладает реактивным сопротивлением, что позволяет использовать оный для ограничения тока. Фактически, это эквивалентно включению резистора последовательно со светодиодом. Плюс у этого способа только один – простота и дешевизна; остальное минусы — абсолютно никакой коэффициент мощности, отсутствие гальванической развязки с сетью (впрочем, это тут не так важно), очень условная стабилизация тока диодов (в нашем случае) и т.д.

Схема лампы спартански проста.

Насчет высокого коэффициента пульсаций не совсем понятно – электролитический конденсатор на выходе вроде как есть (2.2 мкФ, 400 В). Но то ли 2.2 мкФ маловато для такой мощности, то ли конденсатор высох (хотя лампу-то я взял новую), то ли сам конденсатор не особо хорош, но он не помогает – это факт.

Как-то так. Зато стоит дешево, всего около 200 р. в розницу. Но я бы ее и за такие деньги всерьез покупать не стал. Лучше уж купить КЛЛ за ту же цену, скорее всего будет приличнее.

Давайте, однако, расковыряем что-нибудь приличное. Можно было бы взять одиннадцативаттную лампу того же бренда ASD, к слову, лидирующую по всем параметрам, но ASD мы уже разбирали. Потому для разнообразия я предлагаю демонтировать идущую второй лампу от Gauss LED, тем более что отстает она только по коэффициенту мощности, и то ненамного.

Надо сказать, что эта лампа от Gauss непривычно тяжелая, навскидку граммов триста. По ощущениям в руке – этакий солидный кирпичик, что наводит на мысли о каком-то совершенно фантастическом теплоотводе. Вообще, в инструкции обещают, что корпус сделан из керамики и алюминия. Что же, посмотрим.

Наученный горьким опытом с лампой от ASD, к снятию баллона я здесь подходил крайне осторожно. Тем не менее, мои опасения были напрасны – тут он пластиковый, как и должно быть.

Вообще, по колупаемости корпус как-то не похож на керамику. Хотя не знаю, может это я чего-то не понял.

Однако, что мы видим? Алюминиевая плата со светодиодами крепится к корпусу винтами и подключена к драйверу разъемом! Вау. Такого в «одноразовых» приборах вроде лампочек я еще не видел. Не, правда. Неужто она, вопреки предостережениям в инструкции, ремонтопригодна? Если так, то это же просто невероятно!

Упс, увы нет. Схема управления намертво залита компаундом (естесственно, негорючим – я специально проверил), так что о ремонтопригодности можно забыть. К счастью, компаунд оказался не эпоксидной смолой, что свело бы перспективы дальнейшего изучения к нулю, а чем-то вроде пористой резины, которую с некоторым усилием удалось удалить и извлечь драйвер.

Кстати о весе и теплоотводе. Теплоотвод действительно представляет собой достаточно увесистую алюминиевую болванку, запрессованную в то, что, согласно написанному в инструкции, является керамикой.

Однако мы наконец добрались до самого интересного, квинтессенции светодиодной лампочки – ее драйвера.

Как выяснилось, драйвер этой лампочки построен по классической бестрансформаторной понижающей топологии (step-down/buck converter). Так что желтое моточное изделие – дроссель, а не трансформатор обратноходового источника, как могло бы показаться с первого возгляда. В основе решения лежит микросхема MP4050 от Monolithic Power Systems, включенная по практически типовой схеме.

Если говорить об отличиях, инженеры Varton дополнили типовую схему диодным мостом и фильтрующим электролитическим конденсатором на входе, однако сэкономили на конденсаторах, обозначенных на типовой схеме как C1 и C2. Эта экономия, судя по всему, и приводит к не слишком высокому коэффициенту мощности (участок схемы с катушкой является ничем иным, как узлом коррекции коэффициента мощности). Тем не менее, как видно по фотографиям, место под них есть. Сама катушка присутствует и, как видно по замерам параметров, делает свое благое дело.

Итак, что имеем для этой лампы в целом? Прежде всего, отличный коэффициент пульсаций – около 1%, что находится в районе погрешности моего метода измерения. Сам свет на мой вкус очень приятный, без желтизны и синевы, чисто белый. Обстановка в свете этих ламп смотрится очень естесственно, так что заявленному индексу цветопередачи более 92 определенно можно верить. В этом смысле они нравятся мне даже больше КЛЛ, и, разумеется, больше откровенно желтых ламп накаливания.

Очень приличная конструкция. Вообще, намертво залитый компаундом драйвер дает надежду на то, что эту лампу можно использовать во влажных местах вроде ванной комнаты или вовсе в уличных светильниках (к слову, что-то там в инструкции есть про тротуарные светильники). Тем не менее, соединение светодиодной сборки и драйвера, выполненное в виде гламурного разъема, хотя и очень впечатляет, но вселяет некоторые опасения на тему того, как оно поведет себя в условиях систематического присутствия влаги. Было бы однозначно спокойнее, если бы контакты были, например, для верности промазаны чем-то вроде проводящей графитовой смазки или, на худой конец, просто залиты герметиком. Так что насчет этого вопрос.

Читайте также:
Шторы из вуали двух цветов : гармоничные сочетания оттенков и их применение в интерьере с фото

Баллон пластиковый – слава богу. Как мы видели, это далеко не правило. Так что хорошо, что в случае Gauss здравый смысл возобладал.

Некоторую тревогу вызывает тепловой режим драйвера – он помещен аккурат в самое теплое место, да еще и залит компаундом, что предотвращает всякую конвекцию. Тут имеет смысл вспомнить картинку в ИК-лучах:

Греть электролитические конденсаторы до 60 – 70 градусов (внутри, разумеется, будет теплее, чем на поверхности) – так себе идея. Конечно, надо признать, что в такой конфигурации поместить электронику больше просто некуда. Я уже отмечал, что геометрия лампы накаливания чужда светодиодам – вот одно из проявлений этого тезиса. Впрочем, примененные конденсаторы промаркированы как сертифицированные для температуры до 125 °С, и, вроде бы, судя по малочисленным отзывам в интернете, бренд Aishi, который мы видим тут, не самое плохое, что может быть. Хотя, конечно, Chemi-Con или хотя бы что-то более известное науке, вроде Jamicon, в таком применении внушали бы больше доверия. Тем не менее, гарантийный срок, заявленный в инструкции, составляет три года.

Сам тип драйвера определенно выбран верно. Понижающая бестрансформаторная топология очень хороша в смысле малой величины пульсаций, что мы и наблюдаем.

Если говорить о таком важном факторе, как теплоотвод светодиодов, то видимый на ИК-снимке равномерный прогрев корпуса до достаточно высокой температуры позволяет предположить, что в этом смысле все неплохо.

В целом можно сказать, что бесспорный недостаток у этой лампы только один – цена, которая составляет около 700 р. в розницу по данным Яндекс.Маркета. Тем не менее, как видно, это достаточно качественный прибор, который, хотя и стоит космических для лампочки денег, имеет все шансы оправдать доверие.

На этом на сегодня все. В следующих статьях мы продолжим экспериментальное исследование лампочек.

Как работает светодиодная лампа?

На сегодняшний день модели диодной лампы на 220 В начали стремительно заменять стандартные лампы накаливания и их люминесцентный аналог. Хоть и стоят они очень дорого, но их технические параметры значительно превосходят стремительно устаревающие модели. Для понимания того, как они работают, необходимо знать устройство светодиодной лампы.

Конструкция светодиодной лампы достаточно сложна, в систему включены элементы, в наличии которых ранее не было необходимости. В данном материале поговорим об устройстве различных видов светодиодных ламп, из каких деталей они состоят, для чего нужна каждая из этих деталей, что такое светодиодный драйвер и что он стабилизирует, как выглядит схема 220 В. Знание строения такой лампочки полезно для общего образования и очень поможет в ремонте поврежденных по каким-либо причинам единиц.

Светодиод

Уже из названия понятно, что главным рабочим элементом устройства светодиодных ламп на 220 В является светодиод. Именно его классификация в большей мере является решающей в определении видов лампочек.

Светодиод является полупроводниковым кристаллическим элементом, который интенсивно выделяет свет при прохождении через него электрического тока. Разные цвета получаются путем изменения состава кристалла. Он наращивается на специальную площадку, которая имеет контакты для подключения проводов. Изначально кристалл имеет синий цвет, без покрытия испускает соответствующее свечение. Для защиты от внешних факторов на него в светодиодной лампе наносится желтое твердое покрытие, при прохождении синего света сквозь него получается обычный белый свет.

Один из этапов выращивания светодиодов

Один из этапов выращивания светодиодов

Существует четыре основных технологии сборки чипа, которые и определяют классификацию используемых в лампочках светодиодов.

  • SMD-технология – самая распространенная в быту. Кристалл размещается на поверхности светового прибора. Это позволяет сильно уменьшить его размеры, увеличить плотность расположения для большей яркости, при этом он имеет улучшенный теплоотвод. Используется практически во всех лампочках, которые вы видите в магазинах.
  • DIP – световой элемент состоит из одного мощного кристалла, сверху на который прикреплена линза. Это второй по распространенности тип светодиода, благодаря концентрированию светового луча в одном направлении используется для подсветки на витринах и раскладках, а также в вывесках и прочих декоративных элементах.
  • Пиранья – любимчики автомобильной промышленности. В отличие от DIP, где присутствует только два контакта, здесь их четыре, поэтому гораздо легче подключаться к разным вольтовым элементам. Это значительно повышает уровень теплоотвода, расширяет сферу применения, монтаж получается более надежным и долговечным.
  • COB-технология – продвинутая схема подключения светодиодных кристаллов, самый защищенный от перегрева и окисления вариант. Здесь чип впаивается прямо в несущую плату. Благодаря самому продуманному теплоотводу достигается наибольшая яркость свечения, каким бы ни было напряжение. Но и минус присутствует значительный – если такой светодиод все-таки сгорит, его придется менять вместе со всей платой – в домашних условиях даже с неплохим опытом и оборудованием перепаять его будет очень сложно.

Главные враги светодиодов любого типа – перегрев и деградация

Светодиоды имеют весомый недостаток – они очень маленькие. И даже при колоссальном соотношении потребляемого тока и светоотдачи их придется использовать как минимум в количестве нескольких штук рядом, для того чтобы добиться необходимой яркости. Близкое расположение кристаллов друг к другу сильно влияет на их теплоотвод, они перегреваются и выгорают один за другим. LCD-диоды лишены такой проблемы.

Деградация светодиодов может быть вызвана как перегревом, так и длительным сроком эксплуатации даже с отличным теплоотводом. Со временем они начинают тускнеть при потреблении все того же электричества (при воздействии высоких температур это происходит быстрее). Качественные лампочки спустя несколько лет регулярного использования теряют до 30% яркости, у безымянных «китайцев» этот параметр может доходить до 60%.

Примерный график деградации

Примерный график деградации

Устройство светодиодной лампы

Каким бы важным элементом ни являлся светодиод, для его бесперебойной и максимально эффективной работы необходим ряд вспомогательных устройств, которые, будучи собранными воедино, образуют лампочку. Классическая электрическая схема светодиодной лампы имеет строение, приведенное на схеме ниже. Устройство светодиодного светильника аналогично, просто форма и расположение деталей другая.

Читайте также:
Фундамент шведская и финская плита: разница, монтаж, минусы и плюсы

Устройство обычной светодиодной лампы

Устройство обычной светодиодной лампы

Теперь устройство светодиодной лампы на 220 вольт разберем на каждый рабочий элемент отдельно.

  • Начнем с цоколя – на картинке он не указан, однако именно с него начинается схема питания каждой лампочки. Это та самая резьба, с помощью которой источник света вкручивается в патрон. В самом низу лампочки видим зеленый участок – там расположены контакты, которые проводят в нее питание – электрический ток при соединении с контактами в патроне. Бывает несколько различных модификаций, на картинке представлен вариант Е27.
  • Радиатор – в отличие от других обязательных элементов присутствует не в каждой модели. Он выполняется из легкого металлического сплава, играет роль рассеивателя тепла – о вреде перегрева мы говорили выше. Обычно такой деталью оборудуются лампы с мощными светодиодами – свыше 25 ватт суммарной мощности. Все промышленные экземпляры обязательно имеют хороший радиатор в основании.
  • Внутри цоколя обычно расположен «мозг» – драйвер LED-ламп. Он предназначен для регулирования электрического тока, который подается на светодиоды из центральной сети. Светодиодный драйвер сглаживает пульсации переменного тока, выпрямляя его специально для правильной работы кристаллов (а светодиоды работают правильно только при постоянном напряжении, при переменном токе они быстро сгорают из-за обратных пульсаций). Регулируя ток, драйвер обеспечивает большой диапазон работы при различных напряжениях (обычно это 170–260 вольт, зависит от назначения и производителя светового элемента). При низком напряжении лампочка просто не светит, т. к. ей не хватает мощности для запуска, в пределах диапазона загорается, а при избыточном токе электрические драйверы уберегут светодиоды от выгорания, также выключив их. Дополнительно схема драйверов для светодиодных ламп позволяет регулировать теплоотвод – лампочка может выключаться, перегревшись. Благодаря ему, резкие перепады напряжения тоже не страшны нежной и хрупкой структуре кристаллов. Примеры – BP2832A, BP3122 или BP2831A. Подбор стабилизатора (он же диодный мост) для LED-лампочек собственного изготовления выполняется исходя из параметров сети.
  • Светодиоды располагаются на монтажной плате, она выполняется из легкого металла, также играет роль теплоотвода (ответ на вопрос, куда же девается избыток температуры в моделях, где нет радиатора). Качество ее изготовления также сильно влияет на срок работоспособности кристаллов. В зависимости от технологии изготовления LED-лампочки имеют значительный диапазон цветовых температур (от 2 700 К, как у лампы накаливания, до 10 000 К и более, вплоть до глубокого синего цвета). Напряжение в сети играет важную роль в эффективности и стабильности схемотехники. Светодиодные лампы для дома могут комплектоваться несколькими типами светодиодов, например – SM7307 и 5131, в количестве от 6 до 18 шт. и более. На тип светильников влияет напряжение, количество необходимых вольт.
  • Вишенка на торте важности элементов в лампе – светодиоды. Конкретно в вышеупомянутом примере представлены модели, изготовленные по SMD-технологии. Их количество, размер и плотность установки напрямую влияют на яркость лампочки и суммарную мощность. В ярких лампочках 2–3 слабеньких отдельных светодиода заменяются одним большим кристаллом.
  • Совокупность монтажной платы и светодиодов образует светодиодный модуль. Его форма и расположение определяют роль самой лампочки – угол рассеивания и качество распространения света. Такая лампа, как на картинке, нашла применение в быту – на кухнях, в гостиных, там, где нужно много рассеянного света. Замена этого модуля на светодиод, выполненный по технологии DIP, сделает из такой лампочки точечный светильник – ей место либо в декоративном освещении, либо в светильниках с несколькими лампами.
  • Рассеиватель – обычно пластиковый, в фирменных лампочках – из тонкого матового стекла. Благодаря тому, что его форма напоминает уже знакомые нам лампы накаливания, светодиодные экземпляры ставятся практически в любой светильник, сложностей с интеграцией в быт не возникает. Материал играет существенную роль в эффективности свечения, даже если внутри установлены качественные, мощные светодиоды по всем правилам технологии, рассеиватель из дешевого пластика заберет около 20% светового потока. При покупке лампочек для помещений, в которых важна яркость, отдавайте предпочтение моделям с хорошим пластиком или стеклом. Матовость присутствует везде – это делает свет мягким, равномерно его рассеивает, поток не бьет по глазам, а в выключенном состоянии лампа выглядит благородно, начинки не видно (кроме вышеуказанных декоративных моделей с нитевидными светодиодами, это их фишка).

Тип светодиодов, которые используются для конкретной лампочки, очень важен, если вы решите починить ее самостоятельно в случае перегорания. Если светодиоды установлены таким образом, что их можно выпаять и поставить новые, то ремонт ламп происходит очень просто. Достаточно иметь паяльник с тонким наконечником, прибор для определения поврежденных контактов и новый, исправный источник света. В случае если светодиод впаян в плату целиком, даже имея соответствующий опыт, перепаять его в домашних условиях будет очень сложно. Можно купить новую плату, однако ее стоимость является практически равной стоимости новой лампы. Не нужно забывать, конечно, и о гарантии – если она все еще действует, просто замените лампочку в том магазине, где вы ее покупали.

Виды драйверов

Помимо кристаллов самым сложным по структуре элементом в лампе является драйвер. Самая простая схема светодиодного драйвера содержит один или пару гасящих резисторов. В совокупности с диодами обратного направления тока, соединенными встречно-параллельно, резисторы нейтрализуют вредное действие переменного тока, и схема включения работает грамотно.

Схема простейшего драйвера

Схема простейшего драйвера

Такая схема дросселя светодиодной лампы на 220 В чаще всего используется, если изготавливается самодельный драйвер. На производстве принято использовать более сложные принципиальные схемы драйверов для светодиодов от сетей 220 В, которые имеют хороший амортизационный запас и зависят от типа приборов, устанавливающихся внутрь.

Различные схемы драйверов

Различные схемы драйверов

Как уже говорилось выше, драйвер для светодиодной лампы выполняет выпрямление тока с последующей его подачей на светодиоды. Это происходит в три шага:

  • Светодиодный драйвер преобразовывает переменный ток из сети 220 В в пульсирующий.
  • Выравнивает пульсирующий ток до постоянного.
  • Меняет ток до 12 вольт с последующей подачей на кристаллы.
Читайте также:
Утепление потолка в гараже изнутри: недорого пеноплексом своими руками и пенопластом

Заключение

Сначала схема светодиодной лампы на 220 вольт может показаться очень сложной. Однако, разобравшись в назначении каждого элемента, не сложно понять их роль. Использование качественных материалов и грамотной технологии производства обеспечивают высокий уровень надежности светодиодных ламп. Соблюдение правил эксплуатации, рекомендованных производителем, гарантирует, что светодиодная лампа надежно прослужит нам долгие годы. Соотношение яркости и экономичности позволит окупить стоимость хорошей модели лампы в ближайшие годы, а светодиодный драйвер убережет ее от перепадов в электросети. Если свет часто пропадает или наблюдаются нестабильное напряжение – вам подойдет аккумуляторная электросхема (лампочки «Космос», их применение оправдано в местах, где стабильно питаться от сети не получается). Глядя на вышеуказанные схемы, можно легко собрать лампу 220 В своими руками.

Как устроена светодиодная лампа

С развитием электротехники традиционная лампа накаливания перестает быть единственным вариантом для освещения жилья. На смену ей пришли сначала люминесцентные, а затем и светодиодные (LED) источники света. Светодиодные лампы – энергоэффективные, яркие, безопасные для окружающей среды. Но их устройство заметно сложнее. В статье будет рассмотрено устройство светодиодной лампы, ее плюсы и минусы.

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер– элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым. По этой причине они и делятся на холодные и теплые соответственно.

Виды и типы светодиодных ламп.

Четкая классификация у светодиодных ламп отсутствует: изделия производятся слишком разных форм, цветов и конфигураций.

По способу применения:

  1. Источники света общего назначения для освещения квартир и офисов. Характеризуются углом рассеивания от 20 0 до 360 0 .
  2. Изделия направленного света. Такие лампочки называют спотами. Они используются для создания подсветок или выделения интерьерных зон в комнате.
  3. Изделия линейного типа, схожие с привычными люминесцентными лампами. Изготавливаются в виде трубок. Применяются в технических помещениях, офисах, залах магазинов и в других пространствах, где важна пожарная безопасность. Создают яркую, красивую подсветку, которая подчеркнет необходимые детали.

По назначению светодиодные лампы делятся на:

  1. Изделия для уличного применения. Изготавливаются в пыле- и влагозащищенном корпусе.
  2. Изделия для производственных целей, коммунальных служб. Дополняются антивандальным прочным корпусом. Изготавливаются с особыми требованиями к характеристикам освещения: стабильность, срок службы, условия эксплуатации.
  3. Бытовые лампы. Характеризуются невысокой мощностью, стильным дизайном, электро- и пожаробезопасностью, качеством светового потока (индекс цветопередачи, коэффициент пульсации и др.).

Исходя из потребляемого напряжения тоже выделяют три вида ламп:

  1. С питанием 4 В. Маломощные светодиоды, которые потребляют от одного до 4,5 В. Излучают свет разных длин волн от инфракрасного до ультрафиолетового.
  2. С питанием 12 В. Такое напряжение безопасно для человека, поэтому эти источника света подходят для помещений с повышенной влажностью. Часто выпускаются со штырьковыми цоколями, что усложняет процесс подключения. Дополнительная трудность может быть в необходимости специального блока питания, который снизит напряжение сети до 12 В. Удобны для использования автолюбителям и туристам: они могут организовать освещение от аккумулятора.
  3. С питанием 220 В. Самый распространенный вид. Широко применяются для бытовых нужд.

Типы цоколей.

Чтобы LED источники света подходили к уже применяемой схеме электроснабжения домов, их оснащают винтовыми цоколями. В качестве альтернативы светильникам галогенного типа выпускают лампы со штырьковыми цоколями. Основные типы представлены в таблице.

Самый распространенный винтовой тип для бытовых источников света.

Винтовой цоколь для маломощных ламп.

Винтовой цоколь для мощных источников света ( в основном уличных).

Штырьковые контакты для маленьких лампочек.

Штырьковый контакт для мебельных и потолочных источников света.

Аналогично GU5.3, но расстояние между контактами составляет 10 мм.

Штырьковый контакт для плоских светильников.

Контакт, аналогичный люминесцентным трубчатым лампам.

Технические характеристики и маркировка светодиодных ламп.

Выпуском светодиодных источников света занимается множество мировых и российских компаний: OSRAM, Gauss, ASD, Philips, Navigator, ЭРА и другие. О самых популярных из них можно прочитать в статье «Рейтинг светодиодных ламп 2019 года».

Читайте также:
Укладка ламината на старый паркет – различные способы быстрого ремонта

Перед покупкой LED лампы стоит внимательно изучить технические ее свойства, указанные на упаковке. Их довольно много. Чтобы не запутаться, рассмотрим их подробнее.

Пример маркировки технических свойств на упаковках.

Мощность (измеряется в Вт). Показывает, сколько электричества потребляет осветительный прибор. По этому параметру светодиодные источники света на порядок превосходят лампы накаливания. На упаковке указывается фактическая и эквивалентная мощность. Лампа на рисунке фактически потребляет 9 Вт. Она заменяет лампу накаливания мощностью 75 Вт. За счет этого достигается экономия электроэнергии и семейного бюджета.

Мощность промышленных и уличных светодиодных источников света может доходить до 1000 Вт. Но для бытовых нужд фактической мощности от 2 до 20Вт вполне хватит. Для удобства пользователей составлены специальные таблицы с эквивалентными мощностями.

Мощность светодиодных, Вт Мощность люминесцентных, Вт Мощность ламп накаливания, Вт
1 3 15
3 7 35
5 11 50
7 15 70
9 19 90
12 25 120
15 31 150
18 36 180

Световой поток (измеряется в Лм). Этим параметром описывается яркость. Чтобы было понятнее можно представить свет от ламп накаливания мощностью 40, 60 и 100 Вт. Их световой поток аналогичен яркости LED-элементов в 400, 600 и 1000 Лм соответственно. Для удобства стоит запомнить последнюю пару цифр и ориентироваться по ним: традиционная 100 ваттная лампа «Ильича» имеет яркость в 1000 Лм.

Срок службы в часах. Количество часов, которое проработает источник света. По этому показателю LED-элементы лидируют: в среднем они работают в 25 раз больше, чем традиционные лампы.

Однако стоит иметь в виду, что яркость лампы напрямую зависит от количества выработанных часов. Чем старше лампа, тем тусклее она светит. В мире принят стандарт L70. И если на упаковке написано, что световой поток по L70 равен 50000 часов, то означает, что по истечении времени яркость составит всего 70% от первоначальной.

Некоторые производители указывают большой срок службы, но приписывают, что гарантируют его при определенных условиях работы: например, если лампа будет работать в сутки не более трех часов. Это тоже прописывается на упаковке, но как правило сбоку.

Тип цоколя. На рисунке указан тип цоколя Е14 − для небольших светильников.

Цветовая температура (измеряется в К). Характеризует теплоту света. Из-за конструктивных особенностей светодиоды способны давать световой поток разной теплоты: с преобладанием синего спектра или красного с желтым.

  • До 2800 К – теплый желтый свет с красным оттенком (аналогичен лампам накаливания небольшой мощности);
  • 3000 К – теплый белый свет с желтым оттенком (аналог – галогенные источники света);
  • 3500 К – естественный нейтральный белый свет (аналог – люминесцентные лампы; цвет не искажает цветовосприятие, глаза не устают);
  • 4000 К – холодный белый (хорошо освещает пространство, подходит для кухни, офисов, кабинетов);
  • 5000-6000 К – дневной свет (очень яркий, подходит только для производственных помещений);
  • 6500 К и выше – холодный дневной с голубоватым оттенком (применяется в больницах, технических помещениях, при фото- и видеосъемке).

Цветовая температура led-ламп

При подборе цветовой температуры для освещения жилого помещения стоит отметить, что чем она ниже, тем более способствует расслаблению и спокойствию. Более холодные цвета бодрят и настраивают на рабочую обстановку.

Индекс цветопередачи. Определяет, будет ли искажение цветов в помещении. Обозначается латинскими буквами CRI или Ra и цифрами от 1 до 100. Чем ниже его значение, тем сильнее искажение цветов. При индексе 100 искажения не будет совсем. Для использования в доме советуют применять лампы с индексом цветопередачи не менее 80-90.

Габаритные размеры (указываются в мм). Размеры светодиодных источников света чуть больше, чем у аналогичных ламп накаливания. Поэтому, подбирая лампочку к определенному плафону или светильнику, не забудьте проверить габариты. Иначе есть вероятность, что она просто не поместится, куда нужно.

Угол рассеивания. Это угол, на который расходятся световые лучи от источника. Чем параметр выше, тем больше освещаемая площадь. Из-за конструктивных особенностей светодиод всегда светит в основном прямо. Поэтому в лампу встраивают несколько LED-элементов. В зависимости от их расположения внутри корпуса светильника угол рассеивания света может составлять от 30 0 до 360 0 .

Это позволяет создавать, как узконаправленные световые потоки, так широко освещать помещение. Дает возможность для интересных дизайнерских решений. Выбирать угол рассеивания стоит исходя из задачи светильника: для потолочных спотов достаточно 90 0 -180 0 , а для точечной подсветки подойдет и 30 0 .

Также на упаковках указывается:

  • в каком диапазоне напряжений работает источник света (чем он шире, тем выше вероятность того, что источник света, особенно недорогой, не перегорит при скачках в электросети);
  • возможность подключения через диммер – обозначается вот таким значком;
  • коэффициент пульсации (мерцания). Определяется равномерностью свечения. У хороших светодиодных ламп он составляет около 5%, что комфортно для глаз. Источники света с коэффициентом пульсации выше 35% использовать не стоит.

Как подключить светодиодную лампу.

Подключение аналогично лампам накаливания и люминесцентным — следует обесточить патрон и вкрутить в него лампу.

Если необходимо подключить несколько LED источников света, то возможны следующие варианты соединения: последовательный и параллельный.

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Последовательный вариант требует минимального количества проводов, но применяется крайне редко. Причиной этому служат два недостатка. Во-первых, при перегорании одной лампочки из строя выходит вся цепь. Во-вторых, лампы работают не в полную силу, так как при последовательном соединении напряжение суммируется. Пожалуй, единственные случаи, где оправдано последовательное соединение – это елочная гирлянда и освещение подъездов. В этих случаях допустимы низкие показатели мощности у многих источников света.

Схема довольно проста:

  • от распределительной коробки фаза идет на выключатель;
  • от выключателя фаза переходит к светодиодной лампе;
  • ко второму контакту последней лампы в цепи подключают нулевой провод;
  • от ламп к друг к другу переходит фазовый провод.

Последовательная схема подключения светодиодных ламп.

Читайте также:
Установка внешнего блока кондиционера. Установка внешних блоков кондиционера

Параллельный способ применяется чаще всего. Главное преимущество – подача одинакового напряжения ко всем лампочкам в цепи. В случае перегорания из цепи выпадает лишь, вышедший из строя источник света, который легко заменить.

Параллельно можно соединить двумя способами: лучевым и по шлейфной схеме.

Лучевой метод отличается надежностью. Хотя при этом требуется большое количество кабеля. И важно продумать момент соединения всех элементов. Чаще всего для этого используют клеммную колодку. С одной стороны на ее перемычки подают фазу. С обратной стороны подключают провода, тянущиеся от лампочек. Внутри клеммную колодку рекомендуется заполнить антиокислительной пастой. Также вместо колодки использовать скрутку проводов со спайкой.

Схема параллельного лучевого подключения через клеммную колодку.

При использовании шлейфной схемы фазный и нулевой провода от щитка и выключателя подключаются к первой лампочке. От нее кабель подается на вторую и так далее. Таким образом, каждая лампочка (кроме последней) соединяет с четырьмя проводами: двумя фазными и двумя нулевыми.

Схема параллельного подключения по шлейфной схеме.

Подключение лампочек, работающих от напряжения 12В, аналогично, только в схему необходимо включить понижающий трансформатор.

Схема параллельного подключения точечных светильников 12В через трансформатор.

Преимущества и недостатки светодиодных ламп.

  • энергоэффективность – потребляемая мощность в 8-10 раз меньше, чем у ламп накаливания;
  • большой срок службы – светят примерно в 25 раз дольше ламп накаливания;
  • практически не нагреваются;
  • широкий выбор цветовых температур позволяет «играть» с освещением интерьера;
  • стабильная яркость при перепадах напряжения;
  • мгновенное включение;
  • количество включений не влияет на работоспособность;
  • стойкость к механическим повреждениям и вибрациям;
  • возможность применения в «умном доме»;
  • отличные декоративные качества – выпускается множество интересных форм и размеров;
  • не привлекают мошек и других насекомых из-за отсутствия ультрафиолетового свечения;
  • безопасная утилизация и эксплуатация из-за отсутствия в составе опасных веществ.
  • сравнительно высокая стоимость, хотя она постоянно снижается;
  • мерцание (пульсация), которое невидно невооруженному глазу, но очень опасно для зрения (более распространено в дешевых моделях, которые часто производятся без драйвера);
  • сложность конструкции приводит к повышению стоимости и снижению надежности в сравнении с лампами накаливания;
  • непригодны для использования при очень низких и очень высоких температурах;
  • во многих моделях яркость невозможно регулировать при помощи диммера;
  • если используется выключатель с подсветкой, то LED лампа может мерцать или светиться в выключенном состоянии (как этого избежать, читайте в статье «Почему моргает светодиодная лампа»);
  • снижение яркости в процессе эксплуатации;
  • высокий процент брака среди изделий, особенно среди недорогих.

В заключение стоит отметить, что светодиодные источники света – действительно экономичные осветительные приборы. Только перед выбором надо внимательно изучить технические характеристики.

Во-первых, ими экономически целесообразно заменять лампы накаливания мощностью свыше 60 Вт. Иначе стоимость самой светодиодной лампы не окупится.

Во-вторых, стоит заменять только источники света в светильниках, которые работают максимальное количество часов в день.

И, в-третьих, специалисты советуют вначале опробовать несколько марок светодиодных ламп, чтобы определить, чья цветовая температура (и другие параметры) устроит ваши глаза на 100%.

Изучаем устройство светодиодных ламп на 220В

Уже на протяжении многих лет мы применяли обычные лампы накаливания для освещения дома, квартиры, офиса или промышленного предприятия. Однако с каждым днем цены на электроэнергию стремительно растут, что заставляет нас отдавать предпочтение более энергоэффективным устройствам, обладающим высоким КПД, длительным сроком службы и способными создавать необходимый световой поток с минимальными затратами. Именно к таким устройствам относятся светодиодные лампы на 220 вольт, преимущества которых мы постараемся раскрыть в полном объеме в данной статье.

Внимание! В этой публикации приводятся примеры схем, с питанием от опасного для жизни напряжения 220В. Собирать и испытывать такие схемы разрешается только лицам, имеющим необходимое образование и допуски!

Самая простая схема

Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.

Схема светодиодной лампы

Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.

Принцип работы

При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.

После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.

Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.

Схема с дополнительной защитой

Схема светодиодной лампы2

Также в некоторых схемах есть дополнительное сопротивление R3, расположенное последовательно светодиодам. Оно служит для защиты от бросков тока в цепях светодиодов. Цепочка R3—C2 представляет классический фильтр низкой частоты (НЧ).

Схема с активным ограничителем тока

В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.

Схема светодиодной лампы3

Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.

Устройство светодиодных ламп для цепей переменного тока напряжением 220В

Устройство светодиодных ламп

Светодиодные лампочки состоят из следующих компонентов:

  1. Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
  2. Диэлектрической прокладки между цоколем и корпусом;
  3. Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
  4. Радиатора, который служит для отвода тепла от светодиодов;
  5. Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
  6. Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
  7. Светорассеивателя для создания равномерного светового потока.
Читайте также:
Цена и преимущества, электрических и водяных теплых плинтусов

Как подключить светодиодные лампы на 220 вольт

Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.

Светодиодная лампа

Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.

Цоколь

Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.

Схема паралельного подключения

В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.

Внимание! Не перепутайте блок питания (источник питания) постоянного напряжения с трансформатором. Трансформатор дает на выходе переменное напряжение, в то время как источник питания — постоянное напряжение.

Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.

Внимание! В этом случае необходимо заменить используемый ранее трансформатор на источник постоянного напряжения 12 В мощностью не менее 16–20 Вт.

Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.

Как сделать простую светодиодную лампочку

Светодиодная лента

Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,и пустая алюминиевая 330 мл банка

Алюминиевые банки

Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.

Итак, теперь само изготовление:

  1. Обмотайте лентой банку, как показано на рисунке.
  2. Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
  3. Вход ИП проводами припаяйте к цоколю основания лампы.
  4. Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
  5. Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.

Свеетодиодная лампа своими руками3

Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!

Основные неисправности светодиодных ламп на 220 вольт

Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:

1. Выход из строя светодиодов

Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.

Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.

Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.

Светодиод

Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:

Вышедший из строя светодиод

Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.

2. Выход из строя диодного моста

В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.

Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.

Проверка диода

Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.

3. Плохая пайка выводных концов

В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.

Где купить лампу

Максимально быстро закрыть вопрос можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Заключение

Светодиодная лампа 220 в — это энергоэффективное устройство, обладающее хорошими техническими характеристиками, простой конструкцией и легкой эксплуатацией, что позволяет их использования как в домашних, так и промышленных условиях.

Также стоит отметить, чтоб при наличии некоторых приспособлений, образования и опыта можно определить неисправности светодиодных ламп на 220 вольт и с минимальными затратами устранить их.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: