Электромагнитное реле: устройство, виды, маркировка, подключение и регулировка

Электромагнитные реле управления, как работает реле, устройство, виды и характеристики

Реле – электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.

Электромагнитные реле бывают самых различных конструкций. В наиболее распространенной конструкции электрический ток (соответствующего напряжения), проходя через катушку, создает магнитный поток в цепи сердечник — ярмо — якорь, в результате чего якорь притягивается к сердечнику. Это вызывает изменение положения контактов: замыкается один и размыкается другой.

В других конструкциях подвижный сердечник втягивается в катушку. В герметических реле трубчатого типа магнитный поток, создаваемый катушкой, действует непосредственно на контактные пружины, выполненные из магнитомягкого материала, вызывая их срабатывание. Такие контакты могут действовать под влиянием магнитного поля от постоянного магнита или под влиянием общего поля от постоянного магнита и катушки.

Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно:

  • управлять большими мощностями на выходе при малых по мощности входных сигналах;
  • выполнять логические операции;
  • создавать многофункциональные релейные устройства;
  • осуществлять коммутацию электрических цепей;
  • фиксировать отклонения контролируемого параметра от заданного уровня;
  • выполнять функции запоминающего элемента и т. д.

Электромагнитные реле на промышленном предприятии

Первое реле было изобретено американцем Дж. Генри в 1831 г. и базировалась на электромагнитном принципе действия, следует отметить что первое реле было не коммутационным, а первое коммутационное реле изобретено американцем С. Бризом Морзе в 1837 г. которое в последствии он использовал в телеграфном аппарате.

Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом.

На использовании электромагнитных реле построены все схемы автоматики с релейно-контактным управлением. До начал массового использования программируемых логических контроллеров реле были самыми важными элементами автоматики.

А вы это занете?

Реле классифицируются по различным признакам:

  • по виду входных физических величин, на которые они реагируют;
  • по функциям,
  • которые они выполняют в системах управления;
  • по конструкции и т. д.

По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.

Устройство электромагнитного реле

Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.

Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.

Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.

Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.

Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).

Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х < Хср выходная величина равна Уmin, при Х >Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср -1 с.

Конструкция электромагнитного реле

Принцип действия и устройство электромагнитных реле

Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока.

Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой.

Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.

В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение.

В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.

Читайте также:
Столешницы из искусственного камня: виды и свойства

Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.

Когда через катушку электромагнитного реле начинает течь управляющий ток, якорь подтягивается к сердечнику с катушкой и замыкает подвижные контакты. Это запускает управляемое устройство в работу. В то же время для притяжения якоря достаточно гораздо меньшего управляющего тока, чем ток, протекающий по цепи управляющего устройства.

Контакты замыкающий и размыкающий известны в отечественной литературе как нормально открытые (НО) и нормально замкнутые (НЗ) соответственно. «Нормальным» считается состояние обесточенного реле или ненажажой кнопки. Можно привести следующее мнемоническое правило: «Реле (кнопка) находится в нормальном состоянии, если лежит на складе».

Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока.

Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.

Электромагнитные реле Relpol

Достоинства и недостатки электромагнитных реле

  • способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
  • устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
  • исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;
  • малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;
  • экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами

Отмечая достоинства электромеханики, отметим и недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.

Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А.

Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.

Поляризованные электромагнитные реле

Разновидностью электромагнитных реле являются поляризованные электромагнитные реле. Их принципиальное отличие от нейтральных реле состоит в способности реагировать на полярность управляющего сигнала.

Твердотельные реле

В настоящее время все чаще функции реле выполняют полупроводниковые схемы – твердотельные реле (SSR – Solid-State-Relay).

Как работает SSR? Входной ток протекает через оптоэлектронную систему, которая дополнительно обеспечивает разделение входной и выходной цепи и управляет силовой цепью. Конечный эффект такой же, как и в случае с электромагнитным реле — после подачи напряжения на вход включается выход. Единственное отличие состоит в том, что в случае твердотельного реле нагрузка переключается электронными компонентами.

Поскольку это полупроводниковый переключающий элемент, он не содержит (в отличие от электромагнитного реле) каких-либо движущихся частей, которые могут изнашиваться при частом переключении. Другими преимуществами являются бесшумность работы и меньшие размеры при той же мощности переключения. И последнее, но не менее важное: скорость переключения выше, чем у электромагнитных реле.

С другой стороны, недостатком твердотельных реле является более высокое падение напряжения на переключающем элементе и, как правило, необходимость охлаждения такого реле с помощью дополнительного пассивного радиатора. Другим недостатком, связанным с меньшим расширением SSR на практике, является более высокая цена по сравнению с электромагнитными реле.

В отличие от полупроводников в твердотельном реле, электромагнитное реле позволяет гальванически (электрически) разделить цепь управления и цепь управления (смотрите – Что такое гальваническая развязка).

Твердотельные реле часто используется в автоматическом управлении электрическим нагревом, когда нагреватель включается и выключается через короткие переменные интервалы (широко-импульсная модуляция, ШИМ) для регулирования температуры нагревателей.

Твердотельные реле

При выборе решения для вашего проекта стоит обратить внимание на важные отличия твердотельных реле SSR от электромагнитных EMR. Обе группы характеризуются совершенно разными свойствами, связанными с их устройством. Зная особенности реле, можно осознанно использовать их преимущества, выбирая решение, соответствующее конкретным условиям, продиктованным спецификой анализируемого процесса.

В частности, стоит ответить на следующие вопросы:

  • Как часто должно переключаться реле?
  • Это приложение, которое требует очень частого переключения?
  • В каких условиях окружающей среды будет работать ваше реле?
  • Требуется ли бесшумная работа реле?
  • Требуется ли вашему приложению быстрое время отклика и высокая частота переключений?
  • Достаточно ли места в шкафу управления для радиатора и достаточной вентиляции?

При выборе реле также помните о теплоотводе!

Чтобы обеспечить правильную работу твердотельных реле, выделяемое ими тепло должно правильно отводиться. Количество выделяемого тепла зависит от величины тока нагрузки (на выбор радиатора также влияет температура окружающей среды).

Максимальная температура, которую может «выдержать» система SCR, составляет 125°С. Если температура продолжит расти, реле выйдет из строя. Чтобы этого не произошло, реле монтируют на правильно подобранные радиаторы, благодаря которым тепло отводится в окружающую среду.

Реле с радиаторами должны быть установлены на необходимых расстояниях друг от друга и, конечно же, внутри шкафа управления должна быть обеспечена достаточная вентиляция.

Электромагнитные реле в шкафу управления

Самые распространенные серии электромагнитных реле управления

Реле промежуточное серии РПЛ . Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц.

Читайте также:
Технология строительства термодома

Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А

Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.

Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 – 10 А и втягивающими катушками переменного тока – на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 – 10 А. Реле РПУ-3 с втягивающими катушками постоянного тока – на напряжения 24, 48, 60, 110 и 220 В.

Реле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.

Основные характеристики реле РП-21:

  • Диапазон напряжений питания, В: постоянного тока – 6, 12, 24, 27, 48, 60, 110, переменного тока частоты 50 Гц – 12, 24, 36, 40, 110, 127, 220, 230, 240, переменного тока частоты 60 Гц – 12, 24, 36, 48, 110, 220, 230, 240.
  • Номинальное напряжение цепи контактов, В: реле постоянного тока – 12. 220, реле переменного тока – 12. 380 Номинальный ток – 6,0 А.
  • Количество контактов замык. / размык. / перекл. – 0. 4 / 0. 2 / 0. 4.
  • Механическая износостойкость – не менее 20 млн. циклов.

Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 – 300 В, коммутируемый ток 0,1 – 3 А

В качестве промежуточных применяются также электромагнитные реле серий РП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Как выбрать электромагнитное реле

Рабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре.

Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.

При выборе режима работы контактов реле необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.

При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Электромагнитное реле

Электромагнитное реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Устройство реле

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Принцип работы реле

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Реле

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Читайте также:
Устройство фундаментного основания на песке

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Маркировка реле

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, “залипать”. Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. – Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное) Сопротивление обмотки (Ω ±10%) Номинальный ток (mA) Потребляемая мощность (mW)
3 25 120 360
5 70 72
6 100 60
9 225 40
12 400 30
24 1600 15
48 6400 7,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Электромагнитное реле: устройство, маркировка, виды + тонкости подключения и регулировки

Преобразование электрических сигналов в соответствующую физическую величину — движение, сила, звук и т. д., осуществляется с помощью приводов. Классифицировать привод следует как преобразователь, поскольку это устройство изменяет один тип физической величины в другой.

Привод обычно активируется или управляется командным сигналом низкого напряжения. Классифицируется дополнительно как двоичное или непрерывное устройство исходя из числа стабильных состояний. Так, электромагнитное реле является двоичным приводом, учитывая два имеющихся стабильных состояния: включено — отключено.

В представленной статье подробно разобраны принципы работы электромагнитного реле и сфера использования приборов.

Основы исполнения привода

Термин «реле» является характерным для устройств, которыми обеспечивается электрическое соединение между двумя и более точками посредством управляющего сигнала.

Наиболее распространенным и широко используемым типом электромагнитного реле (ЭМР) является электромеханическая конструкция.

Электромагнитное реле

Так выглядит одна конструкция из многочисленного ряда изделий, именуемых как электромагнитные реле. Здесь показан закрытый вариант механизма с помощью крышки из прозрачного оргстекла

Схема фундаментального контроля над любым оборудованием всегда предусматривает возможность включения и отключения. Самый простой способ выполнить эти действия — использовать переключатели блокировки подачи питания.

Читайте также:
Уличные печи для дачи и загородного дома: виды садовых очагов и их особенности

Переключатели ручного действия могут использоваться для управления, но имеют недостатки. Явный их недостаток – установка состояний «включено» или «отключено» физическим путем, то есть вручную.

Устройства ручного переключения, как правило, крупногабаритные, замедленного действия, способные коммутировать небольшие токи.

Кулачковый переключатель

Ручной механизм переключения – «дальний родственник» электромагнитных реле. Обеспечивает тем же функционалом – коммутацией рабочих линий, но управляется исключительно вручную

Между тем электромагнитные реле представлены в основном переключателями с электрическим управлением. Приборы имеют разные формы, габариты и разделяются по уровню номинальных мощностей. Возможности их применения обширны.

Такие приборы, оснащенные одной или несколькими парами контактов, могут входить в единую конструкцию более крупных силовых исполнительных механизмов — контакторов, что используются для коммутации сетевого напряжения или высоковольтных устройств.

Основополагающие принципы работы ЭМР

Традиционно реле электромагнитного типа используются в составе электрических (электронных) схем управления коммутацией. При этом устанавливаются они либо непосредственно на печатных платах, либо в свободном положении.

Общее строение прибора

Токи нагрузки используемых изделий обычно измеряются от долей ампера до 20 А и более. Релейные цепи широко распространены в электронной практике.

Разнообразие электромагнитных реле

Приборы самой разной конфигурации, рассчитанные под инсталляцию на монтажных электронных платах либо непосредственно в виде отдельно устанавливаемого устройства

Конструкция электромагнитного реле преобразует магнитный поток, создаваемый приложенным напряжением переменного/постоянного тока, в механическое усилие. Благодаря полученному механическому усилию, выполняется управление контактной группой.

Наиболее распространенной конструкцией является форма изделия, включающая следующие компоненты:

  • возбуждающую катушку;
  • стальной сердечник;
  • опорное шасси;
  • контактную группу.

Стальной сердечник имеет фиксированную часть, называемую коромысло, и подвижную подпружиненную деталь, именуемую якорем.

По сути, якорь дополняет цепь магнитного поля, закрывая воздушный зазор между неподвижной электрической катушкой и подвижной арматурой.

Конструкция электромагнитного реле

Детальный расклад конструкции: 1 – пружина отжимающая; 2 – сердечник металлический; 3 – якорь; 4 – контакт нормально закрытый; 5 – контакт нормально открытый; 6 – общий контакт; 7 – катушка медного провода; 8 — коромысло

Арматура движется на шарнирах или поворачивается свободно под действием генерируемого магнитного поля. При этом замыкаются электрические контакты, прикрепленные к арматуре.

Как правило, расположенная между коромыслом и якорем пружина (пружины) обратного хода возвращает контакты в исходное положение, когда катушка реле находится в обесточенном состоянии.

Действие релейной электромагнитной системы

Простая классическая конструкция ЭМР имеет две совокупности электропроводящих контактов.

Исходя из этого, реализуются два состояния контактной группы:

  1. Нормально разомкнутый контакт.
  2. Нормально замкнутый контакт.

Соответственно пара контактов классифицируется нормально открытыми (NO) или, будучи в ином состоянии, нормально закрытыми (NC).

Для реле с нормально разомкнутым положением контактов, состояние «замкнуто» достигается, только когда ток возбуждения проходит через индуктивную катушку.

Реле с нормально замкнутым контактом

Один из двух возможных вариантов установки контактной группы по умолчанию. Здесь в обесточенном состоянии катушки «по умолчанию» установлено нормально закрытое (замкнутое) положение

В другом варианте — нормально закрытое положение контактов остается постоянным, когда ток возбуждения отсутствует в контуре катушки. То есть контакты переключателя возвращаются в их нормальное замкнутое положение.

Поэтому термины «нормально открытый» и «нормально закрытый» следует относить к состоянию электрических контактов, когда катушка реле обесточена, то есть напряжение питания реле отключено.

Электрические контактные группы реле

Релейные контакты представлены обычно электропроводящими металлическими элементами, которые соприкасаются друг с другом, замыкают цепь, действуя аналогично простому выключателю.

Когда контакты разомкнуты, сопротивление между нормально открытыми контактами измеряется высоким значением в мегаомах. Так создается условие разомкнутой цепи, когда прохождение тока в контуре катушки исключается.

Контактное сопротивление реле

Контактная группа любого электромеханического коммутатора в разомкнутом режиме имеет сопротивление в несколько сотен мегаом. Величина этого сопротивления может несколько отличаться у разных моделей

Если же контакты замкнуты, контактное сопротивление теоретически должно равняться нулю — результат короткого замыкания.

Однако подобное состояние отмечается не всегда. Контактная группа каждого отдельного реле обладает определенным контактным сопротивлением в состоянии «замкнуто». Такое сопротивление называется устойчивым.

Особенности прохождения токов нагрузки

Для практики установки нового электромагнитного реле, контактное сопротивление включения отмечается малой величиной, обычно менее 0,2 Ом.

Объясняется это просто: новые наконечники остаются пока что чистыми, но со временем сопротивление наконечника неизбежно будет увеличиваться.

Например, для контактов под током 10 А, падение напряжения составит 0,2х10 = 2 вольта (закон Ома). Отсюда получается — если подводимое на контактную группу напряжение питания составляет 12 вольт, тогда напряжение для нагрузки составит 10 вольт (12-2).

Когда контактные металлические наконечники изнашиваются, будучи не защищенными должным образом от высоких индуктивных или емкостных нагрузок, становится неизбежным появление повреждений от эффекта электрической дуги.

Электрическая дуга на контактах реле

Электрическая дуга на одном из контактов электромеханического прибора коммутации. Это одна из причин повреждения контактной группы при отсутствии надлежащих мер

Электрическая дуга — искрообразование на контактах — приводит к возрастанию контактного сопротивления наконечников и как следствие к физическим повреждениям.

Если продолжать использовать реле в таком состоянии, контактные наконечники могут полностью утратить физическое свойство контакта.

Но есть более серьезный фактор, когда в результате повреждения дугой контакты в конечном итоге свариваются, создавая условия короткого замыкания.

В таких ситуациях не исключается риск повреждения цепи, которую контролирует ЭМР.

Так, если сопротивление контакта увеличилось от влияния электрической дуги на 1 Ом, падение напряжения на контактах для одного и того же тока нагрузки увеличивается до 1×10=10 вольт постоянного тока.

Здесь величина падения напряжения на контактах может быть неприемлема для схемы нагрузки, особенно при работе с напряжениями питания 12-24 В.

Тип материала контактов реле

С целью уменьшения влияния электрической дуги и высоких сопротивлений, контактные наконечники современных электромеханических реле изготавливают или покрывают различными сплавами на основе серебра.

Таким способом удается существенно продлить срок службы контактной группы.

Серебряные наконечники контактов

Наконечники контактных пластин электромеханических приборов коммутации. Здесь представлены варианты наконечников, покрытых серебром. Покрытие подобного рода снижает фактор повреждений

На практике отмечается использование следующих материалов, коими обрабатываются наконечники контактных групп электромагнитных (электромеханических) реле:

  • Ag — серебро;
  • AgCu — серебро-медь;
  • AgCdO — серебро-оксид кадмия;
  • AgW — серебро-вольфрам;
  • AgNi — серебро-никель;
  • AgPd — серебро-палладий.
Читайте также:
Способы укладки плитки напольной

Увеличение срока службы наконечников контактных групп реле за счет уменьшения количества формирований электрической дуги, достигается путем подключения резистивно-конденсаторных фильтров, называемых также RC-демпферы.

Эти электронные цепочки включают параллельно с контактными группами электромеханических реле. Пик напряжения, который отмечается в момент открытия контактов, при таком решении видится безопасно коротким.

Применением RC-демпферов удается подавлять электрическую дугу, что образуется на контактных наконечниках.

Типичное исполнение контактов ЭМР

Помимо классических нормально открытых (NO) и нормально закрытых (NC) контактов, механика релейной коммутации также предполагает классификацию с учетом действия.

Особенности исполнения соединительных элементов

Конструкции реле электромагнитного типа в этом варианте допускают наличие одного или нескольких отдельных контактов переключателя.

Реле с конфигурацией SPST

Таким выглядит прибор, технологически сконфигурированный под исполнение SPST – однополюсный и однонаправленный. Существуют также другие варианты исполнения

Исполнение контактов характеризуется следующим набором аббревиатуры:

  • SPST (Single Pole Single Throw) – однополюсный однонаправленный;
  • SPDT (Single Pole Double Throw) – однополюсный двунаправленный;
  • DPST (Double Pole Single Throw) – двухполюсный однонаправленный;
  • DPDT (Double Pole Double Throw) – двухполюсный двунаправленный.

Каждый такой соединительный элемент обозначается, как «полюс». Любые из них могут подключаться или сбрасываться, одновременно активируя катушку реле.

Тонкости применения приборов

При всей простоте конструкции коммутаторов электромагнитного действия, существуют некоторые тонкости практики использования этих приборов.

Так, специалисты категорически не рекомендуют подключать в параллель все контакты реле, чтобы таким способом коммутировать цепь нагрузки с высоким током.

Например, подключать нагрузку на 10 А путем параллельного соединения двух контактов, каждый из которых рассчитан на ток 5 А.

Эти тонкости монтажа обусловлены тем, что контакты механических реле никогда не замыкаются и не размыкаются в единый момент времени.

В результате один из контактов в любом случае будет перегружен. И даже с учетом кратковременной перегрузки, преждевременный отказ прибора в таком подключении неизбежен.

Сгоревшее реле

Неправильная эксплуатация, а также подключение реле вне установленных правил монтажа, обычно заканчивается вот таким исходом. Внутри выгорело практически все содержимое

Электромагнитные изделия допустимо использовать в составе электрических или электронных схем с низким энергопотреблением как переключатели относительно высоких токов и напряжений.

Однако категорически не рекомендуется пропускать разные напряжения нагрузки через соседние контакты одного прибора.

Например, коммутировать напряжение переменного тока 220 В и постоянного тока 24 В. Всегда следует применять отдельные изделия для каждого из вариантов в целях обеспечения безопасности.

Приемы защиты от обратного напряжения

Значимой деталью любого электромеханического реле является катушка. Эта деталь относится к разряду нагрузки с высокой индуктивностью, поскольку имеет проводную намотку.

Любая намотанная проводом катушка обладает некоторым импедансом, состоящим из индуктивности L и сопротивления R, образуя, таким образом, последовательную цепь LR.

По мере протекания тока через катушку, создается внешнее магнитное поле. Когда течение тока в катушке прекращается в режиме «отключено», увеличивается магнитный поток (теория трансформации) и возникает высокое обратное напряжение ЭДС (электродвижущей силы).

Это индуцированное значение обратного напряжения может в несколько раз превосходить по величине коммутационное напряжение.

Соответственно, появляется риск повреждения любых полупроводниковых компонентов, размещенных рядом с реле. Например, биполярный или полевой транзистор, используемый для подачи напряжения на катушку реле.

Схемы защиты управления

Схемные варианты, благодаря которым обеспечивается защита полупроводниковых элементов управления – транзисторов биполярных и полевых, микросхем, микроконтроллеров

Одним из способов предотвращения повреждения транзистора или любого переключающего полупроводникового устройства, включая микроконтроллеры, является вариант подключения обратно смещенного диода в цепь катушки реле.

Когда ток, протекающий через катушку сразу после отключения, генерирует индуцированную обратную ЭДС, это обратное напряжение открывает обратно смещенный диод.

Через полупроводник накопленная энергия рассеивается, чем предотвращается повреждение управляющего полупроводника – транзистора, тиристора, микроконтроллера.

Часто включаемый в цепь катушки полупроводник называют также:

  • диод-маховик;
  • шунтирующий диод;
  • обращенный диод.

Однако большой разницы между элементами нет. Все они выполняют одну функцию. Помимо использования диодов с обратным смещением, для защиты полупроводниковых компонентов применяются и другие устройства.

Те же цепочки RC-демпферов, металло-оксидные варисторы (MOV), стабилитроны.

Маркировка электромагнитных релейных приборов

Технические обозначения, несущие частичную информацию о приборах, обычно указываются непосредственно на шасси электромагнитного коммутационного прибора.

Выглядит такое обозначение в виде сокращенной аббревиатуры и числового набора.

Маркировка электромагнитных реле

Каждое электромеханическое устройство коммутации традиционно маркируется. На корпусе или на шасси наносится примерно такой набор символов и цифр, указывающий определенные параметры

Пример корпусной маркировки электромеханических реле:

РЭС32 РФ4.500.335-01

Эта запись расшифровывается так: реле электромагнитное слаботочное, 32 серии, соответствующее исполнению по паспорту РФ4.500.335-01.

Однако подобные обозначения редкость. Чаще встречаются сокращенные варианты без явного указания ГОСТ:

РЭС32 335-01

Также не шасси (на корпусе) прибора отмечается дата изготовления и номер партии. Подробные сведения содержатся в техническом паспорте на изделие. Паспортом комплектуется каждый прибор или партия.

Выводы и полезное видео по теме

Видеоролик популярно рассказывает о том, как действует электромеханическая электроника коммутации. Наглядно отмечаются тонкости конструкций, особенности подключений и прочие детали:

Электромеханические реле уже довольно долгое время применяются в качестве электронных компонентов. Однако этот тип коммутационных приборов можно считать морально устаревшим. На смену механическим устройствам все чаще приходят более современные приборы – чисто электронные. Один из таких примеров – твердотельные реле.

Появились вопросы, нашли недочеты или есть интересные факты по теме стать которыми вы можете поделиться с посетителями нашего сайте? Пожалуйста, оставляйте свои комментарии, задавайте вопросы, делитесь опытом в блоке для связи под статьей.

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Коммутация – это включение или выключение электроприбора в сеть. Для этого используют разъединители, выключатели, автоматические выключатели, реле, контакторы, пускатели. Последние три (реле, контактор и магнитный пускатель) подобны по своему строению, но предназначены для разных мощностей нагрузки. Это электромеханические коммутационные устройства. У новичков часто возникают вопросы типа:

«Для чего у реле столько контактов?»;

«Как заменить реле, если нет подобного по расположению выводов?»;

Читайте также:
Фотообои в ванную: яркое и необычное оформление комнаты для релакса

«Как подобрать реле?».

Я постараюсь ответить на все эти вопросы в статье.

Содержание статьи

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Для чего нужно реле

Реле – это устройства, автоматически осуществляющие скачкообразные изменения (переключения) в цепях управления или непосредственно воздействующие на механизмы под влиянием каких-либо факторов, достигших заданного значения.

Чтобы включить нагрузку нужно подать на её выводы напряжение, оно может быть постоянным и переменным, с разным количеством фаз и полюсов.

Напряжение можно подать несколькими способами:

Разъёмное соединение (вставить вилку в розетку или штекер в гнездо);

Разъединителем (как вы включаете свет в комнате, например);

Через реле, контактор, пускатель или полупроводниковый коммутационный прибор.

Первые два способа ограничены как по максимальной коммутационной мощности, так и по расположению точки подключения. Это удобно, если свет или прибор вы включаете выключателем или автоматом при этом и они расположены рядом друг с другом.

Для примера, приведу ситуацию, например водонагревательный бак (бойлер) – это достаточно мощная нагрузка (1 – 3 и более кВт). Ввод электроэнергии в коридоре, и там же на электрощите у вас расположен автомат включения бойлера, тогда вам нужно протянуть кабель сечением 2.5 кв. мм. На 3-5 метров. А если вам нужно включить такую нагрузку на большом расстоянии?

Для удаленного управления можно использовать такой же разъединитель, но чем больше расстояние – тем большим получится сопротивление кабеля, значит, нужно будет использовать кабеля с большим сечением, а это дорого. Да и если кабель оборвется – непосредственно на месте включить прибор уже не получится.

Для этого можно использовать реле, которое установлено непосредственно возле нагрузки, а включать его удаленно. Для этого не нужен толстый кабель, ведь сигнал управления обычно от единиц до десятков ватт, при этом может включаться нагрузка в несколько киловатт.

Выключатели и разъединители – нужны для ручного включения нагрузки, для того, чтобы управлять ею автоматически, нужно использовать реле или полупроводниковые приборы.

Сферы применения реле:

Схемы защиты электроустановок. Для автоматического ввода энергии защиты от низких и высоких напряжений, Реле тока – для срабатывания токовых защит, разрешения пуска электрических машин и пр.;

Для удаленного включения.

Электромагнитное реле

Как работает реле

Электромагнитное реле состоит из катушки, якоря и набора контактов. Набор контактов может быть разным, например:

Реле с одной парой контактов;

С двумя парами контактов (нормально-замкнутые – NC, и нормально-разомкнутые – NO);

С несколькими группами (для управления нагрузкой в независимых друг от друга цепях).

Катушка может быть рассчитана на разную величину постоянного и переменного тока, вы можете подобрать под свою схему, чтобы не использовать дополнительный источник для управления катушки. Контакты могут коммутировать как постоянный, так и переменный ток, величина тока и напряжения обычно указана на крышке реле.

Мощность нагрузки зависит от коммутационной способности аппарата обусловленного его конструкцией, на мощных электромагнитных коммутационных устройствах присутствует дугогасительная камера, для управления мощной резистивной и индуктивной нагрузкой, например электродвигателем.

Устройство реле

Для поддержания магнитного поля в свободном пространстве затрачивается больше энергии, чем для его поддержания в магнитном веществе. В результате этого между телами, состоящими из магнитного материала, всегда существует сила притяжения, если они находятся во внешнем намагничивающем поле.

Зазор между ферромагнитными пружинными пластинками закрывается, когда намагничивающая сила превышает силу пружины, и, наоборот, открывается, когда сила пружины преобладает. Такое закрывание и открывание зазора можно использовать соответственно для замыкания и размыкания некоторой электрической цепи.

Когда на катушку реле подаётся ток, то силовые линии магнитного поля пронизывают её сердечник. Якорь изготовлен из материала, который магнитится и он притягивается к сердечнику катушки. На якоре может быть размещена контактная медная пластика и гибкая подводка (провод), тогда якорь находится под напряжением и по медным шинам подаётся напряжение на неподвижный контакт.

Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты. Когда напряжение пропадает – якорь возвращается в нормальное состояние возвратной пружиной.

Устройство реле

Могут быть и другие конструкции, например, когда якорь толкает подвижный контакт, и он переключается от нормального состояния к активному, это изображено на картинке ниже.

Реле

Переключающие контакты реле:

Контакты реле

Итог: Реле позволяет малым током через катушку управлять большим током через контакты. Величина управляющего и коммутируемого (через контакты) напряжения может быть разная и не зависит друг от друга.

Таким образом мы получаем гальванически развязанное управление нагрузкой. Это даёт существенное преимущество перед полупроводниками. Дело в том, что сам по себе транзистор или тиристор он не развязан гальванически, даже более того непосредственно связан.

Токи базы это часть тока коммутируемой через эмиттер-коллектор цепи, в тиристоре, в принципе, ситуация подобна. Если PN-переход повреждается – напряжение включаемой цепи может попасть на цепь управления, если это кнопка – ничего страшного, а если это микросхема или микроконтроллер – они, скорее всего, тоже выйдут из строя, поэтому реализуется дополнительная гальваническая развязка через оптопару или трансформатор. А чем больше деталей – тем меньше надежность.

ремонтопригодность. вы можете провести ревизию большинства реле, например, подчистить контакты от нагара и оно заново заработает, а при определенной сноровке можно заменить катушку или подпаять её выводы если они оторвались от выходящих контактов;

полная гальваническая развязка силовой цепи и цепи управления;

низкое переходное сопротивление контактов.

Чем ниже сопротивление контактов, тем меньше теряется напряжения на них и меньше нагрев. Электронные реле выделяют тепло, чуть ниже я бегло расскажу о них.

из-за того, что конструкция по сути механическая – ограниченное число срабатываний. Хотя для современных реле оно доходит до миллионов срабатываний. Так что сомнительный момент недостаток.

скорость срабатывания. Электромагнитное реле срабатывает за доли секунды, в то время как полупроводниковые ключи могут переключаться миллионы раз в секунду. Поэтому нужно подходить с умом к выбору коммутационной аппаратуры.

при отклонениях от управляющего напряжения может быть дребезжание реле, т.е. состояние, когда ток через катушку мал, для нормального удержания якоря, и оно «жужжит» открываясь и закрываясь с большой скоростью. Это чревато скорым выходом его из строя. Отсюда вытекает следующее правило – для управления реле аналоговый сигнал должен подаваться через пороговые устройства, типа триггера Шмидта, компаратора, микроконтроллера и т.д.;

Читайте также:
Усиление кирпичных стен железобетонной и стальной обоймой, армированием

Щелкает при срабатывании.

Контакты

Характеристики реле

Чтобы правильно подобрать реле нужно учесть ряд параметров, который описывает его особенности:

1. Напряжение срабатывания катушки. 12 В реле не будет устойчиво работать или не включится совсем если вы на его катушку подадите 5 В.

2. Ток через катушку.

3. Количество контактных групп. Реле может быть 1-канальным, т.е. содержать 1 коммутационную пару. А может и 3-канальным, что позволит подключать 4 полюса к нагрузке (например, три фазы 380В)

4. Максимальный ток через контакты;

5. Максимальное коммутируемое напряжение. У одного и того же реле оно различное для постоянного и переменного токов, например 220 В переменного и 30 В постоянного. Это связано с особенностями дугообразования при коммутации разных электроцепей.

6. Способ монтажа – клеммные колодки, вывод для клемм, пайка в плату или установка на DIN-рейку.

Установка на DIN-рейку

Электронные реле

Обычное электромагнитное реле при срабатывании щелкает, что может мешать вам при использовании таких приборов в бытовых помещениях. Электронное реле, или как его еще называют твердотельное реле, лишено этого недостатка, но оно выделяет тепло, т.к. в качестве ключа используется транзистор (для реле постоянного тока) или симистор (для реле переменного тока). Кроме полупроводникового ключа в электронном реле установлена обвязка для обеспечения возможности управления ключом нужным управляющим напряжением.

Схема электронного реле

Электронное реле

Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до 380 В с током до 10 А.

малое потребление управляющего тока;

отсутствия шума при переключении;

больший ресурс (миллиард и больше срабатываний, а это в тысячу раз больше чем у электромагнитного).

может сгореть от перегрева;

если сгорит – отремонтировать не получится.

Как подключить реле

На картинке ниже хорошо изображена схема подключения реле к сети и нагрузке. На один из силовых контактов подключают фазу, на второй нагрузку, а ноль на второй вывод нагрузки.

Как подключить реле

Так собирается силовая часть. Цепь управления собирается так: источник питания, например аккумулятор или блок питания, если реле управляемое постоянным током, через кнопку подключается к катушке. Для управления реле переменного тока схема аналогична, на катушку подается переменное напряжение нужной величины.

Здесь очевидно, что напряжение управления никак не зависит от напряжения в нагрузке, тоже и с токами. Ниже вы видите схему управления активаторами центрального замка автомобиля с двухполярым управлением.

Задача следующая, чтобы активатор совершил движение вперед нужно подключить плюс и минус к его соленоиду, чтобы сдвинуть его назад – полярность нужно сменить. Это сделано с помощью двух реле с 5-ю контактами (нормально-замкнутый и нормально-разомкнутый).

Пример подключения

Когда напряжение подаётся на левое реле, плюс подается на нижний провод (по схеме) активатора, через нормально-замкнутые контакты правого реле верхний провод активатора подключен к отрицательному выводу (к массе).

Когда напряжение подано на катушку правого реле, а левое обесточено, полярность получается обратной: плюс через нормально-разомкнутый контакт правого реле подаётся на верхний провод. А через нормально-замкнутые контактны правого реле – нижний провод активатора соединен с массой.

Этот частный случай я привел для примера того, что с помощью реле можно не только включать напряжение на нагрузку, но и осуществлять разнообразные схемы подключения и переполюсовки.

Подборка статей про электромагнитные пускатели:

Учебное видео про устройство реле и пускателей:

Как подключить реле к микроконтроллеру

Чтобы управлять нагрузкой переменного тока через микроконтроллер удобно использовать реле. Но возникает небольшая проблема: ток потребления реле зачастую превышает максимальный ток через пин микроконтроллера. Чтобы её решить – нужно усилить ток.

На схеме изображено подключение реле с катушкой на 12В. Здесь транзистор VT4 обратной проводимости, он играет роль усилителя тока, резистор R нужен для ограничения тока через базу (устанавливается так, чтобы ток был не более чем максимальный ток через пин микроконтроллера).

Резистор в цепи коллектора нужен для того, чтобы задать ток катушки, подбирается по величине тока срабатывания реле, в принципе, его можно исключить. Параллельно катушке установлен обратный диод VD2 – он нужен, чтобы всплески самоиндукции не убили транзистор и выход микроконтроллера. С диодом всплески отправятся в сторону источника питания, и энергия магнитного поля прекратит свою работу.

Ардуино и реле

Для любителей Arduino есть готовые релейные шилды и отдельные модули. Чтобы обезопасить выходы микроконтроллера в зависимости от конкретного модуля может быть реализована опторазвязка управляющего сигнала, что значительно увеличит надёжность схемы.

Реле для Ардуино

Схема подобного модуля вот:

Схема модуля

Мы говорили о характеристиках реле, так вот они часто указаны в маркировке на передней крышке. Обратите внимание на фото релейного модуля:

10A 250VAC – значит что способно управлять нагрузкой переменного напряжения до 250В и с током до 10 А;

10A 30VDC – для постоянного тока напряжение в нагрузке не должно превышать 30В.

SRD-05VDC-SL-C – маркировка, зависит от каждого произовдителя. В ней мы видим 05VDC – это значит, что реле сработает от напряжения в 5В на катушке.

При этом у реле есть нормально открытый контакты, всего 1 подвижный контакт. Схема подключения к ардуине изображена ниже.

Схема подключения нагрузки к Ардуино

Подробнее про Ардуино для начинающих:

Заключение

Реле это классический коммутационный прибор который используется везде: пультах управления в щитовых промышленных цехов, в автоматике, для защиты оборудования и человека, для избирательного подключения конкретной цепи, в лифтовом оборудовании.

Начинающему электрику, электронщику или радиолюбителю очень важно научиться использовать реле и составлять схемы с ними, так вы можете применять их в работе и хозяйстве, реализуя релейные алгоритмы без применения микроконтроллеров. Это хоть и увеличит габариты, но значительно улучшит надежность схемы. Ведь надежность это не только долговечность, но и безотказность и ремонтопригодность!

Читайте также:
Укладка ламината: как правильно настилать панели — вдоль комнаты или поперек?

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории В помощь начинающим электрикам, Промышленное электрооборудование

Электромагнитное реле

Электромагнитное реле

В нашей жизни существуют еще и другие виды полей, невидимые для человеческого глаза. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?

Магнитное поле образуется вокруг любого куска магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: северный (N — North) и южный (S — South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они нигде не разрываются. Даже в самом магните (доказано наукой). Как вы знаете, Земля — это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами. На полюсах Земли, как вы знаете, компас не работает.

Но самый смак заключается в том, что провод, по которому течет электрический ток, вокруг себя образует то же самое магнитное поле как и простой магнит. Буквой I отмечают направление тока, а В — это линии магнитного поля. Они представляют собой замкнутые круги.

Электромагнитное реле

Направление линий магнитного поля определяется правилом буравчика

правило буравчика

Даже не знаю, кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.

Электромагнитное реле

В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых линий образуется в соленоиде, при подаче на его концы электрического тока!

Электромагнитное реле

А если обмотать какую-нибудь железяку этими витками и подать на них напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.

Электромагнитное реле

Внешний вид электромагнитного реле

Дело как раз в том, что принцип электромагнита используется в очень важном электротехническом изделии: в электромагнитном реле.

Возьмем простое электромагнитное реле

электромагнитное реле

Давайте же посмотрим, что на нем написано:

электромагнитное реле tdm

TDM ELECTRIC — видимо производитель. РЭК 78/3 — название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры. Контакты с 1 по 9 — это и есть коммутационные контакты реле, 10 и 11 — это катушка реле.

Теперь обо всем по порядку. Реле состоит из коммутационных контактов. Что значит словосочетание «коммутационные контакты»? Это контакты, которые осуществляют переключение. Катушка — это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.

Еще чуть ниже мы видим такие надписи, как 5А/230 В~ и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.

Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9

электромагнитное реле описание

Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.

Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9.

Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC — это постоянный ток, АС — переменный. Значит, на катушку подаем 12 Вольт постоянного тока.

электромагнитное реле катушка

С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:

электромагнитное реле контакты

Как работает электромагнитное реле

электромагнитное реле принцип работы

Но как же так оно работает? Все оказывается очень просто. Давайте внимательно рассмотрим фото ниже:

При подаче на катушку напряжения, ярмо притягивается к электромагниту. На ярме находится коммутационный контакт и он движется вслед за ярмом. В результате этого, «пипочка» на коммутационном контакте перебрасывается на нижний контакт и происходит переключение.

При пропадании напряжения на катушке, пружинка оттягивает ярмо назад и реле принимает свой первозданный вид.

Электромагнитное реле

Как проверить электромагнитное реле

Давайте же проверим реле с помощью мультиметра и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.

электромагнитное реле проверка

Подаем напряжение на катушку 12 Вольт с блока питания и смотрим, что у нас получилось.

Электромагнитное реле

В результате у нас ярмо «приклеилось» к электромагниту (катушке) и потянула за собой коммутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Вот таким образом проверяются контакты реле.

Если контакты с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты «пипочки».

Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно зависит от самого реле. У всех оно разное. Если сопротивления нет или оно очень маленькое — порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.

электромагнитное реле проверка катушки

На схемах электромагнитные реле обозначаются вот так:

Электромагнитное реле

Также контакты обозначают уже просто цифрами. В данном случае:

11 — это общий контакт

11-12 — это нормально замкнутые контакты

11-14 — нормально разомкнутые контакты

Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.

При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:

Без подачи напряжения:

Электромагнитное реле

После подачи напряжения:

Электромагнитное реле

Плюсы и минусы электромагнитного реле

Плюсы

  • Управляемое напряжение и управляющее напряжение никак не связаны между собой. Выражаясь домашним языком — напряжение на катушке никак не связано с напряжением на контактах реле. Они гальванически развязаны, что делает реле безопасным устройством для человека и самой аппаратуры в электро- и радиопромышленности.
  • коммутируемые токи могут достигать сотни ампер у промышленных видов реле (пускатели, контакторы)
  • большой срок службы при правильной эксплуатации. До сих пор на некоторых зарубежных станках ЧПУ стоят реле 70-ых годов, чьи коммутационные контакты выглядят почти как новые.
  • неприхотливость в работе и надежность. Реле до сих пор используются в средствах автоматического управления (САУ), так как они неприхотливы и готовы работать безотказно, хотя уже давненько разработаны твердотельные реле (ТТР), которые опережают простые электромагнитные реле по многим параметрам.
Читайте также:
Технология и особенность замены холодного остекления на теплое

Минусы

  • время задержки срабатывания, в течение которого коммутационный контакт «летит» с одного контакта до другого. В очень быстродействующей аппаратуре реле не применяются. Производители обеспечивают электротехническую промышленность различными видами реле и других устройств на их принципе.
  • щелкающий звук при переключении. Кого-то он может раздражать, особенно если реле будет очень часто срабатывать.
  • габариты даже самого маленького электромагнитного реле достаточно много занимают место на печатной плате.

Не знаете, где можно купить нужное вам электромагнитное реле? Вот каталог , где вы найдете подходящее по параметрам реле для своих нужд ;-)

Автомобильные реле: как устроены, как их выбирать и проверять

Машины год от года становятся все умнее – они уже самостоятельно вращают рулем, меняют жесткость подвески, делают водителю массаж пятой точки и многое другое… Однако конечный исполнительный механизм большинства электрических цепей автомобиля, скромная «рабочая лошадка» – это реле, практически не изменившее свою конструкцию аж с 1831 года, когда впервые было изобретено… Что обычному автовладельцу полезно знать о реле?

Как устроено и применяется реле

К ак известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.

Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.

Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.

1

В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.

Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.

2

Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:

005

006

Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.

007

Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.

008

009

010

К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…

Что нужно знать о работе реле?

Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…

011

Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.

Читайте также:
Советы по выбору дизайна тюли для детской комнаты

012

Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».

Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.

013

Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.

014

Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.

В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.

015

Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.

Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.

3

Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.

Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.

Проверка реле

При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.

Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).

На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.

4-1

Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.

5

Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: