Что такое производительность насоса. Основные типы и виды насосов, их характеристики

Что такое производительность насоса. Основные типы и виды насосов, их характеристики

Насосы. Виды, характеристики, устройство насосов

  • Опубликовано: 4 марта, 2021

В соответствии с ГОСТ ISO 17769–1–2014 все насосы делятся на две большие группы:

  • объемные насосы;
  • динамические насосы.

Объемный насос — насос, в котором жидкая среда перемещается за счет периодического изменения объема занимаемой ею камеры, попеременно сообщающейся с входом и выходом насоса.

Динамический насос — насос, в котором жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся с входом и выходом насоса.

1. Объемные насосы

Объемные насосы работают по принципу механического вытеснения жидкости твердым телом. Основные типы объемных насосов:

  • поступательно-поворотные насосы (зубчатые, винтовые);
  • роторно-поступательные насосы (поршневые, плунжерные, диафрагменные);
  • роторно-вращательные насосы (шиберные, роторно-поршневые).

Объемные насосы применяют для создания большого напора жидкой среды, который может достигать нескольких сотен метров при сравнительно малом объеме подачи жидкой среды. Эти насосы обладают высоким коэффициентом полезного действия и в большинстве случаев могут работать как самовсасывающие.

Самовсасывание — способность насоса в период пуска откачивать воздух из всасывающего трубопровода, создавая вакуум, необходимый для заполнения трубопровода жидкой средой и включения насоса в нормальную работу.

1.1. Поступательно-поворотные насосы

Поступательно-поворотный насос — возвратно-поступательный насос с возвратно-поворотным движением ведущего звена. К насосам этого типа относят зубчатые и винтовые насосы.

Зубчатый насос — роторно-вращательный насос, в котором жидкая среда перемещается в плоскости, перпендикулярной оси вращения рабочих органов. Одной из разновидностей такого насоса является шестеренный насос.

Шестеренный насос — зубчатый насос с рабочими органами в виде шестерен. Существует два типа шестеренных насосов:

  • шестеренные насосы с внешним зацеплением (рис. 1);
  • шестеренные насосы с внутренним зацеплением (рис. 2).

Устройство и схема работы шестеренного насоса с внешним зацеплением

Рис. 1. Устройство и схема работы шестеренного насоса с внешним зацеплением: а — начало процесса всасывания жидкой среды; б — заполнение рабочей камеры насоса жидкой средой; в — начало процесса нагнетания жидкой среды

Устройство и схема работы шестеренного насоса с внутренним зацеплением

Рис. 2. Устройство и схема работы шестеренного насоса с внутренним зацеплением: а — начало процесса всасывания жидкой среды; б — заполнение рабочей камеры насоса жидкой средой; в — начало процесса нагнетания жидкой среды

Винтовой насос — роторно-вращательный насос с перемещением жидкой среды вдоль оси вращения рабочих органов.

Существуют следующие типы винтовых насосов:

  • одновинтовые насосы;
  • двухвинтовые насосы;
  • трехвинтовые насосы;
  • многовинтовые насосы.

Одновинтовой насос — винтовой насос, в котором замкнутая рабочая камера образована винтом (ротором) и неподвижной обоймой (статором) (рис. 3).

Двухвинтовой насос — винтовой насос, в котором замкнутая рабочая камера образована двумя винтами (роторами), находящимися в зацеплении, и неподвижной обоймой (статором).

Трехвинтовой насос — винтовой насос, в котором замкнутая рабочая камера образована тремя винтами (роторами), находящимися в зацеплении, и неподвижной обоймой (статором) (рис. 4).

Многовинтовой насос — винтовой насос, в котором замкнутая рабочая камера образована более чем тремя винтами (роторами), находящимися в зацеплении, и неподвижной обоймой (статором).

Одновинтовой насосный агрегат

Рис. 3. Одновинтовой насосный агрегат: а — общий вид; б — рабочие органы

Устройство трехвинтового насоса

Рис. 4. Устройство трехвинтового насоса

1.2. Роторно-поступательные насосы

Роторнопоступательный насос — роторный насос с вращательным и возвратно-поступательным движением рабочих органов. К насосам этого типа относят:

  • поршневые насосы, включая плунжерные;
  • диафрагменные насосы.

Поршневой насос — возвратно-поступательный насос, у которого рабочий орган выполнен в виде поршня (рис. 5).

Устройство поршневого насоса

Рис. 5. Устройство поршневого насоса

При движении поршня из крайнего левого положения вправо за счет разрежения открывается всасывающий клапан, и жидкая среда поступает в цилиндр. Нагнетательный клапан в это время закрыт (прижат к седлу избыточным давлением в напорном трубопроводе). Обратное давление поршня вызывает возрастание давления, вследствие чего всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкая среда из цилиндра поступает в напорный трубопровод.

Разновидностью поршневых насосов являются плунжерные насосы.

Плунжерный насос — возвратно-поступательный насос, у которого рабочий орган выполнен в виде плунжера (рис. 6).

Устройство плунжерного насоса

Рис. 6. Устройство плунжерного насоса

Диафрагменный насос — возвратно-поступательный насос, у которого рабочий орган выполнен в виде упругой перегородки — диафрагмы (рис. 7).

Диафрагменный насос

Диафрагменный насос с двумя рабочими камерами

Рис. 7. Диафрагменный насос: а — устройство рабочей камеры; б — общий вид насосного агрегата с одной рабочей камерой; в — общий вид насосного агрегата с двумя рабочими камерами

В таких насосах используется упругость диафрагмы, выполненной из специального материала. При всасывающем ходе плунжера вследствие разрежения, создаваемого в цилиндре, диафрагма выгибается в сторону цилиндра; в рабочей камере также создается разрежение, и жидкая среда всасывается. При обратном ходе плунжера происходит выталкивание жидкой среды в напорный трубопровод.

1.3. Роторно-вращательные насосы

Роторно-вращательный насос — роторный насос с вращательным движением рабочих органов. К насосам этого типа относят шиберные насосы.

Шиберный насос — роторно-вращательный насос с рабочими органами в виде шиберов. Существует два типа таких насосов:

  • фигурно-шиберные насосы;
  • пластинчатые насосы (рис. 8).

Устройство и схема работы пластинчатого насоса

Рис. 8. Устройство и схема работы пластинчатого насоса: а — начало процесса всасывания жидкой среды; б — заполнение рабочей камеры насоса жидкой средой; в — начало процесса нагнетания жидкой среды

2. Динамические насосы

Динамические насосы по виду сил, действующих на перекачиваемые жидкие среды, делят на следующие группы:

  • лопастные насосы;
  • насосы трения;
  • электромагнитные насосы.

2.1. Лопастные насосы

Лопастный насос машина для передачи механической энергии через вращающееся лопастное колесо к перекачиваемой жидкой среде с целью придания ей вектора скорости и давления.

К лопастным насосам относят:

  • центробежные насосы;
  • осевые насосы;
  • диагональные насосы.

Центробежный насос — лопастный насос, в котором жидкая среда перемещается через рабочее колесо от его центра к периферии.

Насосный агрегат — устройство, состоящее из насоса и привода совместно с элементами трансмиссии, опорной плитой и другим вспомогательным оборудованием.

Современные центробежные насосы и насосные агрегаты можно разделить на группы по следующим признакам:

  • по расположению оси вращения ротора насоса — горизонтальные насосные агрегаты (см., например, рис. 9, ав; рис. 11, а), вертикальные насосные агрегаты (см. например, рис. 10, а, б; рис. 11, в, д) и насосные агрегаты, у которых в зависимости от способа их установки на насосной станции ось вращения ротора может быть расположена либо горизонтально, либо вертикально (см., например, рис. 9, г; рис. 10, в; рис. 11, б, г);
  • по способу соединения насоса с электродвигателем — консольные насосные агрегаты (см., например, рис. 9, а; рис. 10, а) и моноблочные насосные агрегаты (см., например, рис. 9, в; рис. 10, в);
  • по количеству комплектов рабочих органов — одноступенчатые насосные агрегаты (см., например, рис. 9, 10) и многоступенчатые насосные агрегаты (см., например, рис. 11);
  • по количеству подводов жидкой среды к рабочим органам насоса — насосы одностороннего входа (см., например, рис. 9, а, в, г) и насосы двустороннего входа (см., например, рис. 9, б; рис. 10, б; рис. 11, д);
  • по возможности погружения насосного агрегата в перекачиваемую жидкую среду — насосные агрегаты, которые не допускается погружать в перекачиваемую жидкую среду (см., например, рис. 9, ав); полупогружные насосные агрегаты (см., например, рис. 10, а); погружные насосные агрегаты (см., например, рис. 9, г; рис. 11, б); насосные агрегаты, которые в зависимости от способа их установки на насосной станции могут быть размещены либо без погружения, либо с погружением в перекачиваемую жидкую среду (см., например, рис. 9, г; рис. 11, б).

Ротор — узел насоса, представляющий собой вал с установленными на нем рабочим колесом (колесами), защитными втулками и другими закрепленными на валу деталями.

Консольный насосный агрегат — насосный агрегат, у которого рабочее колесо закреплено на консольном участке вала насоса. При этом соединение вала насоса с валом электродвигателя осуществляется специальной муфтой.

Моноблочный насосный агрегат — насосный агрегат, у которого рабочее колесо насоса закреплено непосредственно на валу электродвигателя. При этом корпус насоса крепится к электродвигателю с помощью фланцевого соединения.

Полупогружной насосный агрегат — насосный агрегат, который устанавливают с погружением корпуса насоса под уровень перекачиваемой жидкой среды и с размещением электродвигателя над поверхностью этой жидкой среды.

Погружной насосный агрегат — насосный агрегат, погружаемый под уровень перекачиваемой жидкой среды.

горизонтальные центробежные насосы и насосные агрегаты

Рис. 9. Устройство некоторых одноступенчатых горизонтальных центробежных насосов и насосных агрегатов: а — консольный насос одностороннего входа; б — насос двустороннего входа; в — самовсасывающий моноблочный насосный агрегат; г — погружной моноблочный насосный агрегат, установленный горизонтально без погружения в перекачиваемую жидкую среду

Устройство вертикальных центробежных насосов и насосных агрегатов

Рис. 10. Устройство некоторых одноступенчатых вертикальных центробежных насосов и насосных агрегатов: а — консольный полупогружной насосный агрегат; б — насос двустороннего входа; в — линейный (бесфундаментный) моноблочный насосный агрегат, установленный вертикально

Устройство многоступенчатых центробежных насосов и насосных агрегатов

Рис. 11. Устройство некоторых многоступенчатых центробежных насосов и насосных агрегатов: а — горизонтальный секционный насос; б — погружной моноблочный насосный агрегат, установленный горизонтально без погружения в перекачиваемую жидкую среду; в — скважинный вертикальный секционный насосный агрегат погружного типа; г — линейный моноблочный насосный агрегат, установленный вертикально; д — вертикальный конденсационный насос двустороннего входа

Приведенный вариант деления центробежных насосов на группы не является исчерпывающим. Возможны классификации этих насосов и по другим признакам.

Осевой насос — лопастный насос, в котором жидкая среда перемещается через рабочее колесо в направлении его оси.

Рабочее колесо осевого насоса похоже на винт корабля (рис. 12). Оно состоит из втулки, на которой закреплено несколько лопастей. Осевой направляющий аппарат служит отводом насосу. С его помощью устраняется закрутка жидкой среды, в результате чего ее кинетическая энергия преобразуется в энергию давления.

Схема осевого насоса

Рис. 12. Схема осевого насоса

Осевые насосы применяют, когда необходимо обеспечить подачу большого объема воды в единицу времени с малым напором.

Разновидностью осевого насоса является диагональный насос.

Диагональный насос — насос, который создает напор как за счет центробежной силы, так и за счет подъемной силы лопастей рабочего колеса. В диагональном насосе жидкая среда входит в рабочее колесо в осевом направлении, а выходит под углом к оси насоса. По конструкции диагональный насос похож на осевой, основное его отличие — в форме рабочего колеса.

Ряд осевых и диагональных насосов и насосных агрегатов представлен на рис. 13.

Осевые и диагональные насосы и насосные агрегаты

Рис. 13. Устройство некоторых осевых и диагональных насосов и насосных агрегатов: а — горизонтальный диагональный насос; б — горизонтальный осевой насос; в — вертикальный полупогружной диагональный насос; г — погружной диагональный насосный агрегат; д — погружной осевой насосный агрегат

2.2. Насосы трения

Насос трения динамический насос, в котором жидкая среда перемещается под воздействием сил трения. К насосам этого типа относят шнековые насосы и вихревые насосы.

Шнековый насос — насос трения, в котором жидкая среда перемещается через винтовой шнек в направлении его оси (рис. 14).

шнековый насос

Рис. 14. Устройство шнекового насоса

Вихревой насос — насос трения, в котором жидкая среда перемещается по периферии рабочего колеса в тангенциальном направлении (рис. 15).

вихревой насос

Рис. 15. Устройство вихревого насоса

2.3. Электромагнитные насосы

Электромагнитный насос — динамический насос, в котором жидкая среда перемещается под воздействием электромагнитных сил (рис. 16).

электромагнитный насос

Рис. 16. Устройство электромагнитного насоса

Из всех рассмотренных в главе типов насосов самыми распространенными в мире являются центробежные насосы: их продажи занимают около 90 % мирового рынка насосов.

В жилищно-коммунальном хозяйстве и системах водного хозяйства промышленных предприятий центробежные насосы применяют для подачи воды, сточных вод и осадков.

Осадок — многокомпонентная смесь органического, минерального или смешанного состава, образующаяся при очистке сточных вод и водоподготовке в песколовках, отстойниках или других сооружениях.

Кроме центробежных насосов, в системах водоснабжения и водоотведения используют и другие насосы:

Назначение и принцип действтия насосов

Насосы – это гидравлические машины, предназначенные для перемещения жидкостей под напором.

Работа насосов основана на преобразовании энергии приводного двигателя в механическую энергию движущейся жидкости.

С помощью насосов можно:

поднимать жидкость на необходимую высоту;

подавать жидкость на необходимое расстояние в горизонтальной плоскости;

осуществлять циркуляцию жидкости в какой-либо замкнутой системе.

Насосы входят в состав оборудования насосной станции. Принципиальная схема работы насосной станции применительно к условиям водоснабжения или канализации может быть отражена следующей схемой:

3 – приводной электродвигатель;

4 – силовой понижающий трансформатор;

6 – напорный трубопровод;

7 – камера гашения напора.

Энергия жидкости, прошедшей через насос, всегда больше, чем ее энергия перед насосом.

Основные параметры насосов

Основными параметрами насосов являются:

Q – подача, [м 3 /с; л/с; м 3 /ч];

N – мощность, [КВт];

– коэффициент полезного действия.

Напор насоса представляет собой приращение энергии жидкости на участке от входа в насос до выхода из него. Напор выражается в метрах.

Напор определяет высоту подъема или дальность перемещения жидкости (соответственно Н и L).

Подача насоса характеризуется объемом жидкости, подаваемой насосом в напорный трубопровод в единицу времени, и измеряется обычно в м 3 /с; л/с; м 3 /ч.

Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь, неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по трубопроводам.

Мощность насоса измеряется в КВт. Мощность насоса определяет мощность приводного двигателя и суммарную (установленную) мощность насосной станции.

Коэффициент полезного действия насоса учитывает все виды потерь, связанных с преобразованием насосом механической энергии двигателя в энергию движущейся жидкости.

КПД определяет экономическую целесообразность эксплуатации насоса при изменении остальных его рабочих параметров (напора, подачи, мощности).

Классификация насосов

Исторически насосы создавались для решения лишь одной задачи – подъема воды.

В настоящее время область применения насосов чрезвычайно многообразна. Разработаны насосы для:

водоснабжения и канализации городов и промышленных предприятий;

орошения и осушения земель;

транспортирования инертных материалов;

питания котельных установок тепловых электростанций;

нефтяной, химической, бумажной, пищевой и других отраслей промышленности;

намыва земляных сооружений;

водопонижения и откачивания воды из котлованов;

подачи бетона и строительных растворов;

удаления отходов промышленных предприятий;

обеспечения смазки и охлаждения машин.

Таким образом, насосы являются одним из наиболее распространенных видов машин.

Рассмотрим классификацию насосов в соответствии с принципом действия (см. рисунок):

В соответствии с принципом действия все существующие в настоящее время насосы могут быть разделены на два вида:

насосы динамические;

– насосы объемного действия.

Динамические насосы – гидравлические машины, в которых жидкость движется за счет силового воздействия в камере постоянного объема, сообщающейся с подводящими и отводящими устройствами.

В зависимости от вида силового воздействия на жидкость динамические насосы, в свою очередь, делятся на лопастные насосы и насосы трения.

Лопастные насосы: Насосы трения:

Объемные насосы – гидравлические машины, работающие по принципу вытеснения жидкости из камеры за счет уменьшения объема камеры.

В зависимости от формы движения рабочих органов насосов, объемные насосы, в свою очередь, делятся на возвратно-поступательные насосы и роторные (вращательные) насосы.

Возвратно-поступательные насосы: Роторные (вращательные) насосы:

Существуют другие классификации насосов:

по виду перекачиваемой жидкости;

по роду применяемого привода.

Основные требования, предъявляемые к насосам, используемым в водоснабжении и канализации:

надежность и долговечность работы;

экономичность и удобство эксплуатации;

изменение рабочих параметров в широких пределах при условии сохранения высокого КПД;

минимальные размеры и масса;

удобство монтажа и демонтажа

СХЕМЫ УСТРОЙСТВА И ПРИНЦИП ДЕЙСТВИЯ ЛОПАСТНЫХ НАСОСОВ

В системах водоснабжения и канализации применяются следующие типы лопастных насосов:

Виды и классификация насосов

Насос – тип гидравлической машины, который перемещает жидкость путем всасывания и нагнетания, используя кинетическую или потенциальную энергию. Насос необходим для использования в противопожарных технических средствах, для отвода жидкостей в жилых кварталах, при подаче топлива и многих других целях. По области применения, конструкции, принципу действия существует разные виды и типы насосов. При использовании насосов для различных целей необходимо знать, какие виды бывают и чем они отличаются.

Общая классификация

В первую очередь насосы делятся по области применения на бытовые и промышленные. Бытовые насосы используются в домашних хозяйствах, промышленные — на предприятиях и в специальных службах (пожарная). Отдельная классификация насосов по типу рабочей камеры предполагает деление на динамические и объемные насосы.

Виды насосов и их классификация

Различные классификации насосов основаны на понимании того, какие типы насосов существуют и чем они отличаются. Насосы делятся на несколько видов, те, в свою очередь, делятся на категории.

По техническим характеристикам:

  • в зависимости от объема жидкости, перемещаемой в единицу времени;
  • давление и напор;
  • КПД.

По области применения:

  • бытовые;
  • промышленные.

Разделение насосов по сферам применения

Область применения насосов очень широкая. Сегодня их используют практически во всех сферах: строительстве, промышленности, при добыче полезных ископаемых, при разработке систем пожаротушения. В малых масштабах также используются различные типы насосов, и область их применения варьируется от бытового использования для полива, до установки в системах водоснабжения и теплопередачи. В зависимости от сферы применения выделяют типы и виды насосов. Ниже представлены описания, их характеристики и разновидности.

Типы насосов

По целевому назначению:

  • погружные насосы;
  • поверхностные насосы.

По способу энергопитания:

  • электрические насосы;
  • жидкотопливные насосы.

В зависимости от типа воды:

  • для чистой воды;
  • для воды средней степени загрязненности;
  • для воды высокой степени загрязненности.

Типы бытовых насосов и область их применения

По области применения насосы делятся на бытовые и промышленные. Бытовые насосы бывают поверхностными и погружными. Для бытового использования чаще используют первый тип. Поверхностные насосы применяются для автономного водоснабжения частных домов, полива прилежащей территории, откачки воды из подвалов и прудов, повышения давления при автономной подаче воды в частный дом.

Существует четыре типа бытовых насосов:

  • садовые;
  • насосные станции;
  • дренажные;
  • глубинные.

Описание и характеристики насосов

Существует 2 вида насосов: поверхностные и погружные. Поверхностные насосы устанавливаются на уровне земли, в скважину или яму опускается шланг. Если насос оборудован автоматической системой включения-выключения при подаче воды, то он называется станцией. Насосы погружного типа включают в себя: дренажные насосы, фекальные, циркуляционные, насосы, установленные в колодцах и скважинах.

Разновидности насосов по конструкции

По конструкции все насосы различаются между собой. Они могут быть вертикальные и горизонтальные. Все насосы отличаются своей сборкой, в зависимости от модели в них могут быть использованы лопатки, лопасти, винты.

Классификация по принципу действия — по типу рабочей камеры

Различают типы насосов по принципу действия и конструкции. Они делятся на объемные и динамические насосы.

  1. Объемные насосы — такие, в которых жидкость перемещается за счет изменения объема камеры с жидкостью под действием потенциальной энергии.
  2. Динамические насосы – механизмы, в которых жидкость перемещается вместе с камерой под действием кинетической энергии.

Динамические насосы, в свою очередь, делятся на лопастные и струйные.

Отдельно выделяют виды объемных насосов по принципу действия в зависимости от конструкции:

  1. Роторные насосы – это цельный корпус, с определённым числом лопаток/лопастей, приходящих в движение при помощи ротора.
  2. Шестеренные насосы – самый простой тип механизма, состоящий из сцепленных между собой шестерен, приходящих в движение под принудительным изменением полости между шестернями.
  3. Импеллерные – в эксцентрический корпус заключены лопасти, при вращении выдавливающие жидкость.
  4. Кулачковые – насосы, в корпус которых заключены 2 ротора, которые при вращении перекачивают жидкости разной степени вязкости.
  5. Перистальтические – корпус включает эластичный рукав, в котором находится жидкость. При вращении дополнительных валиков жидкость перемещается по рукаву.
  6. Винтовые – насосы, состоящие из ротора и статора. При вращении ротора жидкость начинает перемещаться по оси насоса.

Существует также деление динамических насосов по принципу действия:

  1. Центробежные – включает в себя рабочее колесо, внутри которого находится жидкость, при вращении колеса, частицы приобретают кинетическую энергию, начинает действовать центробежная сила, под действием которой жидкость переходит в корпус мотора.
  2. Вихревые насосы – по принципу действия аналогичны центробежным, но менее габаритны и имеют более низкий КПД.
  3. Струйные – основаны на переходе потенциальной энергии в кинетическую.

Вихревый тип насоса является наиболее часто используемым за счет легкости установки. В бытовых нуждах такой агрегат устанавливают в загородных домах для обеспечения подачи воды. Циркуляцию воды обеспечивает жидкость, подаваемая на лопатки, расположенные в корпусе насоса. Ключевым элементов здесь является колесо, на которое вода подается через входное отверстие. Также такой насос используют для скважин, так как создают высокое давление. Они обладают способностью самовсасывания и могут перерабатывать не только жидкость, но газо-водную смесь.

Насосы центробежного типа часто применяют в бытовых и промышленных целях:

  • для организации систем водоснабжения на промышленных предприятиях;
  • для организации систем водоснабжения жилых кварталов;
  • для систем полива.

Эти насосы отличаются простотой эксплуатации, так как принцип работы достаточно прост. Основную нагрузку принимает колесо с лопатками, на которое и подается жидкость, однако если жидкости внутри не будет, то насос выйдет из строя. Чаще такие насосы бывают поверхностными. За счет этого снижается их производительность. Погружные насосы центробежного типа требуют герметичность корпуса высокого качества.

Классификация по назначению

По назначению различные виды насосов используют в промышленных целях (в пищевой, химической, бумажной промышленности). В бытовых целях насосы используются при строительстве, откачке воды из скважин и колодцев, для бурения колодца, для теплоснабжения. Бурение колодца требует использования насосной станции или насоса погружного типа. Насос обеспечивает подачу воды из скважины под небольшим давлением.

В автомобилях и промышленных машинах насосы являются вспомогательными устройствами.

При добыче полезных ископаемых используют различные типы насосов для бурения скважины, обустройства прилежащей к скважине территории, откачки жидкости, для переработки жидкостей. В промышленности насосы устанавливаются на предприятиях для гидроудаления отходов производства.

Насосы, применяемые в пищевой индустрии, часто имеют устройства для измельчения материалов (кроме камня и металлов), чтобы предотвратить засорение трубопровода.

Отдельно выделяют насосы для пожаротушения. Конструкция таких насосов предусматривает подачу воды под сильным давлением.

Дренажные насосы относятся к погружным, они характеризуются наличием системы измельчения и фильтрации.

Насосы, нагнетающие давление используются в системах, где требуется повышение давления при работе (теплоснабжение, водоснабжение).

Выделяют виды водяных насосов по назначению:

  1. Водоподъемные.
  2. Циркуляционные.
  3. Дренажные.

В зависимости от сферы использования существует классификация водяных насосов по принципу действия.

  1. Водоподъемные насосы используются для экстракции жидкости из скважин или колодцев.
  2. Циркуляционные виды насосов используют для перемещения жидкости в системах отопления, кондиционирования и подачи воды.
  3. Дренажные насосы используют для откачивания жидкости из подвалов и канализации.

Классификация по виду перекачиваемой среды

В зависимости от того, какого типа жидкость будет проходить через насос, конструктивные и другие особенности будут различаться.

Насосы используют для перекачивания:

  • чистой жидкости и жидкости малой загрязненности;
  • жидкостей средней степени загрязненности с примесями легкой взвеси;
  • не сильно загазованных жидкостей;
  • смесей газа и жидкости;
  • агрессивных жидкостей;
  • жидких металлов.

Для работы с разными типами жидкости используют насосы объемного типа. Этот вид насосов работает по принципу изменения объема камеры, что приводит к переходу энергии двигателя в энергию субстанции. Такие насосы способны работать с любыми средами, однако следует учитывать высокий уровень вибрации.

Динамические насосы могут также работать с любыми типами жидкостей, однако они не обладают способностью к самовсасыванию. В зависимости от конструктивных особенностей насосов существуют различные способы переработки перемещаемой жидкости. Например, вихревые насосы динамического типа не предназначены для работы с загрязненной жидкостью, включающей абразивные вещества. Для таких агрегатов жидкость с примесями является разрушающей, приводя к истончению стенок насоса.

Виды промышленных насосов

В промышленности используются насосы разных типов. Основные виды насосов, используемые на различных предприятиях:

  • многоступенчатые;
  • маслонасосы шестеренные;
  • насосы химические погружные;

Промышленные насосы используются в различных областях

  • в легкой промышленности;
  • в химической промышленности;
  • в строительстве;
  • в машиностроении;
  • при добыче полезных ископаемых.

Вид и тип насоса выбирается в зависимости от нужд предприятия, свойств и качества перекачиваемой жидкости.

К наиболее популярным относятся глубинные насосы, так как широко используются в бытовых и промышленных целях. Их легко монтировать при установке систем водоснабжения и отопления, они используются для забора воды из скважин, в отопительных системах.

Основные виды насосов по типу подводимой энергии:

  • насосы, работающие за счет механической энергии;
  • водоструйные насосы;
  • насосы, работающие за счет сжатого пара или газа.

К насосам, работающим за счет механической энергии, относятся поршневые насосы, пропеллерные, винтовые, центробежные и ротационные. Несмотря на одинаковый принцип действия, эти насосы сильно отличаются по конструкции. Водоструйные насосы – элеваторы, эжекторы, работают за счет подачи жидкости на лопасти колеса.

Насосы для систем пожаротушения

Основным требованием к насосам системы пожаротушения является подача воды под высоким давлением. Наиболее часто используемыми являются центробежные насосы, так как они позволяют быстро закачать воду за счет центробежной силы. Важными пунктами при выборе насоса для пожаротушения являются:

  • напор;
  • частота вращения колеса;
  • КПД;
  • высота всасывания;
  • объем перемещаемой воды.

В зависимости от количества колес с лопастями насосы бывают одноступенчатыми и многоступенчатыми. Многоступенчатые агрегаты позволяют создать более высокое давление, что в свою очередь, влияет на напор и высоту подаваемой жидкости. При установке систем пожаротушения в зданиях стоит учитывать, что оборудование необходимо периодически проверять, так как застой может вызвать затруднения при запуске. На пожарных машинах устанавливают центробежные насосы и вспомогательные агрегаты. Вспомогательные насосы заполняют корпус центробежного насоса жидкостью и отключаются автоматически.

Масляные и топливные насосы

Среди промышленных типов насосов выделяют масляные и топливные устройства, устанавливаемые на двигателях автомобилей и машин и двигателях внутреннего сгорания.

Масляные насосы обеспечивают снижение силы трения между взаимодействующими частями двигателя. Они бывают регулируемыми и нерегулируемыми. В двигателях автомобиля устанавливаются роторные или шестеренные насосы для перекачивания масла.

Топливные насосы устанавливаются в автомобилях в обязательном порядке. Они обеспечивают доставку топлива из бака в камеру сгорания. В зависимости от конструкции топливные насосы бывают: механические и электрические.

Погружные насосы

Погружные насосы применяются при работе на глубине более восьми метров. Все типы погружных насосов обладают системой охлаждения, а также выполнены из прочного материла, помогающего избежать деформации под давлением. Погружные насосы бывают центробежными и вибрационными. В насосах второго типа жидкость всасывается с помощью вибрационного или электромагнитного механизма.

Производительность насоса

Для того, чтобы подобрать подходящий насос, необходимо знать технические характеристики насоса, его напор и производительность и соотнести данные с условиями эксплуатации агрегата. Найти параметры можно на табличке насоса (шильдик), в техпаспорте или инструкции к эксплуатации.

Что такое производительность насоса?

Производительность насоса – это фактический объем жидкости, перекаченный за определенную единицу времени. В России стандартом измерения производительности насоса является количество перекаченных кубических метров жидкости в один час (м³/ч). В продаже можно встретить также насосы с обозначением параметров л/с (литры в секунду). Значения параметров зачастую бывают теоретическими и приблизительными, так как фактически расход агрегата превышает заявленную производительность. В формуле для расчета не учитываются возможные утечки и потери в трубопроводе, так как в идеале эти значения и вовсе должны стремиться к нулю. В современных гидравлических насосах номинальный и идеальный расходы действительно практически идентичны.

От чего зависит производительность насоса?

Производительность насоса зависит от следующих факторов:

  • Вид и тип гидравлической машины
  • Тип перекачиваемой жидкости, ее вязкость и густота
  • Скорость вращения шестеренок, их габариты, впадины и выступы зубьев (в работе масляного насоса)
  • Частота линейного перемещения рабочего органа насоса
  • Количество рабочих колес и их диаметр (в многоступенчатых агрегатах подача выше, чем в одноступенчатых)

Регулировка производительности

В ходе работы насосов возникает необходимость менять параметры производительности. Такая потребность возникает на насосных станциях городских и муниципальных водоснабжений, в сельском хозяйстве, в котельных и на теплоэлектростанциях. Регулировка производительности необходима для ограничений или увеличений объемов подачи в соответствии с нуждами. Для регулировки производительности насосов существует несколько способов.

Дросселирование

Этот метод применяется для увеличения энергопотребления и снижения общего КПД системы. Работа метода состоит в установке задвижки на трубопроводе, подающем напор. Задвижки бывают ручными и автоматическими и работают в различных режимах. Задвижку можно прикрывать для снижения расхода и увеличения гидравлического сопротивления сети. Такое действие вызовет снижение подачи и увеличение напора.

Байпасирование

Байпасирование (или перепуск) – это метод регулировки производительности, подходящий для автоматических систем отопления. В случае, если необходима ручная регулировка, вместо клапана устанавливается задвижка. Суть метода состоит в установки перемычки с клапаном между напорным и всасывающим трубопроводами. Такое действие помогает сохранять постоянную величину перепада давления, что приводит к регулированию напора. Когда давление падает – напор увеличивается, клапан открывается и излишки воды возвращаются в зону всасывания из напорного трубопровода. По этой причине насос эксплуатируется в зоне оптимального коэффициента полезного действия с постоянными параметрами расхода и напора жидкости.

Обточка рабочего колеса

Как мы уже упоминали, на величину подачи в центробежных насосах влияет рабочее колесо и его диаметр.

Поэтому, при обточки (уменьшении) диаметра производительность падает вместе с напором. Производить обточки следует в соответствии с допустимой нормой (количеству и величине). Найти соответствующую информацию можно в нормативных документах на группу насосов.

Изменение частоты вращения рабочего колеса

Оптимальным вариантом регулировки производительности считается изменение числа оборотов вала приводного электродвигателя. К плюсам метода относят:

  • Энергоэффективность
  • Возможность эксплуатации насоса при максимальных КПД
  • Автоматическое поддержание напора или производительности в необходимых пределах
  • Комфортное изменение параметров в соответствии с потребностями системы

Оставить заявку или получить обратную связь вы можете написав нам на info@industriation.ru или позвонив по бесплатному номеру 8 800 550-72-52. Специалисты отдела продаж подберут оборудование, проконсультируют по возникшим вопросам и проконтролируют поставку.

Производительность насоса. Особенности и характеристики насосов

Производительность центробежного насоса (подача Q) – это объём жидкости, перемещаемый агрегатом за момент времени. Для того чтобы произвести расчёт производительности насоса, необходимо знать условия, в которых он будет эксплуатироваться. Рассчитав данную величину, вы определитесь, какое устройство вам подойдёт. Для расчёта производительности нужного устройства начнём с вопроса, как рассчитать напор насоса, который нам понадобится. Для этого нам необходимо произвести замеры расстояния от точки зеркала воды до самого крайнего потребителя. Расстояние считается в метрах. Обратите внимание! Принято, что расстояние 10 метров по горизонтали от точки напора равняется одному вертикальному метру подъёма устройства. То есть устройство с напором 40 метров будет выдавать не более 2 атмосфер давления, если он будет производить забор воды на уровне её выдачи, а расстояние до точки выдачи будет 200м (то есть без подъёма, только по горизонтали).

Схема подключения насосной станции к водопроводу

Расчет производительности для дома

  • Смеситель умывальника – 10 литров в минуту
  • Смеситель ванной – 15 литров в минуту
  • Стиральная машина – 8 литров в минуту.

Насосная станция Zetta

Выдача 20 литров в минуту, ёмкость резервуара 2л – идеальное негабаритное решение для постоянного напора воды в загородном доме из резервуара

Итак, мы выяснили, что для нужного нам снабжения дома водой нам понадобится, чтобы подача насоса составляла 33 литра воды в минуту на высоту 10 метров . Получив эти данные, направляйтесь в специализированный магазин и подбирайте нужную модель.

Характеристики насоса

Гидравлическая характеристика – показывает зависимость производительности и напора, обозначается на графиках кривыми линиями. Подача устройства – это объём жидкости, перемещаемый агрегатом за момент времени. Обозначается буквой Q – это производительность (подача). Измеряется в м 3 /ч либо л/сек. Напор насоса – высота, на которую устройство может поднять столб воды. Обозначение буква H. Измеряется в метрах (м). Мощность – это энергия, которую получает поток воды за момент времени. Обозначается буквой N, а измеряется в киловаттах. Электрическая мощность – значение мощности электропривода аппарата, которая также измеряется в киловаттах.

Кривая напора насоса

КПД – значение выражает, сколько потребляемой энергии преобразуется в полезную. Полезная энергия – это энергия, которую отдаёт устройство жидкости, а потребляемая энергия – это значение, сколько потратил двигатель энергии, чтобы раскрутить вал. Нагрузка, которую оказывает вода за счёт создания давления и её перемещения съедает часть полезной энергии, из-за этого она теряется. Высокий показатель КПД говорит о том, что машина эффективно справляется с работой. Узнав, в чём измеряется производительность, вы легко сможете ориентироваться, на какие данные следует обращать внимания и понимать, что они означают.

Импеллерный насос

Импеллерный аппарат. производительность импеллерного насоса позволяет ему работать с вязкими жидкостями. Применяется в нефтепереработке, пищевой и химической промышленности

Подбор насоса по конструкции и рабочей точке

Рабочая характеристика – величина производительности. Такой график показывает зависимость напора машины от ее производительности. Рабочая точка – это место пересечения линий характеристики, а именно его производительности и напора. Такие графики составляются в условиях замеров нужных величин и внесение их на ось ординат. Величина измеряется в л/сек либо м 3 /час. Считается идеальным параметром для выбора устройства. Стоит учитывать, что со временем аппарат даёт просадку, и значение этой величины соответственно тоже изменяется. Учитывая просадку, устройство берут мощнее.

Рабочая точка насоса расчет

Техническая характеристика агрегата указывает, какова номинальная производительность насосов. Такие данные помогают нам определиться при выборе устройства. Зная условия эксплуатации, их сравнивают с номинальными значениями и подбирают нужный агрегат с учётом запаса. Выбор аппарата для скважины:

  • импеллерный; (ламельный)
  • пластинчатый; (шиберный)
  • центробежный;
  • плунжерный;
  • шестерённый;
  • центробежно-шнековый (дисковый и осе – диагональный).

Оседиагональный насос

Регулирование работы насоса

  1. Дросселирование – самым распространённым является процесс регулирования за счёт изменений системы подачи. Для изменения условий системы подачи пользуются вентилями и задвижками. Из-за опасности возникновения кавитации таким способом не рекомендуется злоупотреблять. Как правило, на промышленных объектах на каждом вентиле стоят метки, пределы которых переходить не допускается, ввиду возникновения аварийной ситуации. (Кавитация – процесс образования пузырьков во всасывающем патрубке с последующим схлопыванием и высвобождением большого количества кинетической энергии, опасен гидроударами и разрывами трубопроводов).
  2. Изменение частоты вращения – потери и возникновение аварийной ситуации минимальны, не требуется крутить задвижки. Такой метод можно считать идеальным, но увы недостаток все-таки есть. Не каждый привод предполагает регулировку частоты вращения.

Деталь насоса

В некоторых случаях производят регулирование работы устройства за счет изменения угла наклона лопастей

Все остальные способы требуют вмешательства в середину рабочей части насоса. Например, в многоступенчатых устройствах убирают количество рабочих ступеней.

Производительность насоса

В чём измеряется производительность? Подача измеряется в м3/ч в час либо л/сек. От производительности зависит, то для каких целей он будет применён. У любой мотора есть свои заявленные характеристики. Как правило, они пишутся на жестяных табличках и крепятся на корпусе агрегата.

Центробежный насос Pedrollo

  • Q – подача 40 литров в минуту;
  • H – напор устройства, его высота подъёма столба воды 38 метров;
  • V – питание сети 220Вольт 50Hz;
  • kW – 0.37кВт – мощность двигателя, ток 2,5А;
  • 2900 – оборотов на валу;
  • IP 44 – степень защиты (от капель и брызг, предметов размеров не более 1мм).
  • Также, указана страна производитель.

Обзор насосов

Насосы бывают промышленные и бытовые. В основу работу положен одинаковый принцип, разница только в размерах и индивидуальных параметрах. Нужный агрегат подбирается в зависимости от типа выполняемой работы. Рассмотрим типы устройств и их разновидности.

Насосное оборудование для водоснабжения

Поверхностные насосы

  • Вихревые – имеют небольшую глубину всасывания. Большинство видов применяются для повышения давления воды, которая поступает из системы или резервуара. Также, существуют конструкции, которые используются для забора воды с небольшой глубины, до 9 метров. Для удобств эксплуатации такие устройства устанавливаются в паре с автоматикой. Благодаря системе автоматики и гидроаккумулятора, появилась возможность получать воду, просто открыв кран. Автоматика следит за наполнением резервуара (гидроаккумулятора) и подкачивает воду в него, когда давление снижается до установленного значения.

Насос консольный вихревой

Поверхностный вихревой насос в разрезе. У центробежного аппарата такая же конструкция, отличие в том, что используется два и более колеса забора воды

Центробежные – практически ничем не отличаются. Они имеют аналогичную конструкцию. Разница состоит в количестве составных частей: у вихревого устройства – одно колесо, а у центробежного может быть два и больше колеса забора воды. От количества колёс зависит мощность напора. Выдача составляет от трех до девяти кубических метров в час. Центробежный насос устройство и принцип работы:

Колодезные насосы

Такие машины имеют нижний забор воды. Конструкция позволяет работать полностью погружая устройство в воду. Охлаждение осуществляется благодаря температуре перекачиваемой жидкости. В конструкции применено оригинальное решение – автоматический выключатель, который отключает питание при падении уровня воды. Выключатель работает по принципу поплавка. Аппарат дает от трёх до семи кубов воды в час, напор от 10 до 30 метров.

Колодезный насос Grundfos

Скважинные насосы

Размер скважинных агрегатов в диаметре составляет от 75мм до 250мм, благодаря этому размеру, не составляет труда опустить аппарат в обсадную трубу скважины. Они подходят для подачи слегка загрязнённой воды с примесями. Благодаря хорошей производительности насосы получили достаточно широкое применение в быту. Устанавливаются в комплекте с автоматикой и гидроаккумулятором. Используют для обеспечения водой жилых домов.

Схема подключения насоса

Дренажные насосы

Погружной тип, предназначенный для работы с загрязнённой водой. Такими устройствами откачивают загрязнённую воду с котлованов, подвалов, бассейнов, искусственных водоёмов. Устройства малогабаритные, производительность насосов колеблется от 10 до 100 кубических метров в час, в зависимости от производителя и назначения.

Насос дренажный погружной характеристики

Разновидностью дренажных устройств выступают фекальные. Отличие их в том, что фекальный может перекачивать жидкость, содержащую более крупные частицы, используются для перекачивания канализационных и сточных вод. Фекальные насосы подходящие вашим параметрам можно на нашем сайте.

Шестерёнчатый насос

Шестерёнчатый, как его ещё называют шестерённый – это агрегат объёмного типа. Хорошо себя зарекомендовал при работе с вязкими продуктами, такие как различные типы масла, нефтепродукты. Существует два типа: с внутренним зацеплением и внешним. Проводя расчет производительности насоса шестерёнчатого типа, необходимо учитывать то, что она зависит от конструкции машины и его размеров, косозубые шестерни обеспечивают более плавный поток жидкости, чем прямозубые. Чтобы узнать производительность насоса формула следующая:

  • Q – производительность шестеренчатого насоса, м 3 /с;
  • f – площадь поперечного сечения пространства между соседними зубьями, м 2 ;
  • z – число зубьев;
  • b – длинна зуба, м;
  • n – частота вращения зубьев, сек -1 ;
  • ηV – объемный коэффициент полезного действия.

Циркуляционный насос

Для поддержания правильного режима работы теплоносителя, для циркуляции воды в системе отопления применяют циркуляционные насосы. Основной особенностью является размер. Они очень компактны и размещаются, прямо на магистральной трубе системы отопления. Благодаря устройству достигается равномерная температура по всей системе отопления. В них есть встроенный режим регулировки производительности.

Циркуляционный насос характеристики

Коротко о главном

Мы посмотрели краткий обзор насосов. Узнали, что такое производительность насосов, узнали, как она измеряется и рассчитывается, что такое рабочая точка, какой следует подобрать агрегат в зависимости от типа его конструкции, как смотреть его исходные параметры, что они означают и многое другое. Думаю, вы стали маленьким профессионалом и, опираясь на эту информацию, с лёгкостью разберётесь в своей системе водоснабжения. и советами по применению насосного оборудования в нашей жизни.

Хотелось бы, чтобы вы поделились своими советами по применению насосного оборудования в нашей жизни.

Производительность насоса

Наряду с напором и мощностью производительность относится к числу важнейших параметров насоса. Значение этих характеристик – определяющий критерий при выборе оборудования. Покупка насосного агрегата начинается с выяснения, удовлетворяет ли производительность устройства предъявляемым требованиям. О ней и пойдёт речь в нашей сегодняшней статье.

Что такое производительность насоса

Под производительностью насоса, она же подача или объемный расход, понимают объем жидкости, перекачиваемый оборудованием в единицу времени. Параметр обозначается буквой Q. Основные единицы измерения – м3/с, м3/ч, л/с, л/ч. Максимальное значение данной технической характеристики указывают на идентификационной табличке каждого насоса – шильде.

Производительность включает только объем реально перемещенной жидкости, обратные утечки не учитываются. Соотношение теоретического и реального расходов называют объемным КПД. У современного насосного оборудования уровень герметизации очень высок, поэтому реальная производительность практически равна теоретической.

Иногда вместо объемного расхода пользуются массовым. В этой ситуации величину подачи измеряют не объемом, а массой перемещаемой жидкости в единицу времени. Массовый расход обозначают буквой G.

Соотношение между массовым и объемным расходом выражается формулой:

Массовый и объемный расход

Где ρ – плотность перекачиваемой жидкой среды.

Способы измерения производительности

  • Ротаметр. Прибор представляет собой стеклянную трубку с поплавком, немного расширяющуюся кверху. Ротаметр вмонтирован в трубопровод, для измерения прибор снабжен шкалой и калибровочным графиком. С ростом подачи поплавок поднимается вверх. Вид калибровочного графика определяется конструкцией измерительного прибора и свойствами жидкой среды.
  • Дифманометр с мерной диафрагмой. Прибор выглядит как U-образная трубка с жидкостью. Диафрагма в виде переборки с отверстием ставится в трубопровод, трубка подключается двумя шлангами, подсоединенными перед диафрагмой и за ней. Жидкости в трубопроводе и дифманометре не перемешиваются. Напор перекачиваемой жидкой среды после прохода через диафрагму снижается. По шлангам напор передается жидкости в U-образной трубке. Чем выше производительность, тем больше отличается напор с обеих сторон диафрагмы и тем выше разница между уровнями жидкости в двух ветвях дифманометрической трубки. Измерительные показания дифманометра переводятся в подачу с помощью градуировочного графика.
  • Автоматические измерительные приборы. Информация о величине подачи передается на компьютер в виде электрического сигнала.

На что влияет производительность

Потребительские свойства насоса выражаются зависимостью напора от подачи. Максимальной подаче соответствует минимальный напор, и наоборот.

График зависимости получают опытным путем и заносят в сопровождающую техническую документацию. Если по каким-либо причинам соответствующая информация отсутствует, ее запрашивают на предприятии-изготовителе или самостоятельно тестируют оборудование на месте.

Длительная бесперебойная работа насоса возможна только при соответствии производительности условиям эксплуатации. Обычно требуемая величина объемного расхода известна заранее, поскольку оборудование подбирают под конкретную трубопроводную систему.

Производительность, м³/ч Подходящий тип насоса
До 10 Бочковые, насосы-дозаторы, винтовые, импеллерные, полупогружные центробежные, мембранные, химические центробежные, оборудование для дезинфекции
10 – 100 Винтовые, импеллерные, полупогружные центробежные, мембранные, химические центробежные

Каждый тип насосного оборудования используют в определенной сфере применения. В ряде случаев возможные направления использования перекрываются. Например, винтовые насосы в отдельных областях успешно конкурируют с центробежными.

Если эксплуатационным требованиям удовлетворяют сразу несколько типов насосов, предпочтение отдают оборудованию, наиболее подходящему к конкретной величине производительности. Учитывают цену и затраты на эксплуатацию, включая размер потребляемой мощности и расходы на обслуживание или ремонт.

Расчет производительности, взаимосвязь с типом насоса

Конструкция и принцип действия насоса влияют на характеристику производительности и способ расчета. На величине параметра отражаются частота оборотов или тактов, свойства жидкости, характеристики трубопровода. При самовсасывании, увеличении плотности и вязкости жидкости подача снижается.

Центробежные

Центробежные насосы показывают высокую производительность, отличаются равномерностью подачи, однако показатели резко снижаются с возрастанием напора. По величине напора модели центробежного типа уступают оборудованию с мембранной, винтовой или импеллерной конструкцией.

С ростом производительности растет потребляемая мощность, а КПД проходит через максимальное значение и начинает уменьшаться. Наиболее благоприятный эксплуатационный режим при заданной частоте оборотов достигается при максимальном КПД.

Зависимость напора, потребляемой мощности и КПД от производительности при постоянной частоте оборотов отражается в универсальной характеристике. Показатели зависимости получают при проведении контрольных испытаний.

Насосы центробежного типа с несколькими колесами на одном валу называют многоступенчатыми. Жидкость поочередно перемещается через каждое из колес. При одинаковом с одноступенчатым насосом объемном расходе у многоступенчатого устройства напор будет больше.

Способы регулирования подачи:

  • Изменение частоты оборотов рабочего колеса. С уменьшением частоты оборотов колеса снижается производительность насоса. Данный способ регулировки наиболее эффективен с энергетической точки зрения, поскольку со снижением подачи сокращается напор насоса, соответственно, уменьшается потребление электроэнергии. До сравнительно недавнего времени широкому применению рассматриваемого способа мешала высокая стоимость преобразователей частоты. Сегодня промышленность массово выпускает преобразователи частоты надлежащего качества, произошло снижение цен, что сказалось на изменении ситуации в пользу подобного способа регулировки.
  • Смена положения задвижки на напорном трубопроводе. Изменение производительности достигается за счет регулирования задвижкой гидравлического сопротивления в трубопроводной системе. Чем сильнее открыта задвижка, тем выше подача. Этот способ проще, чем изменение частоты оборотов, но более затратен с точки зрения энергопотребления. При снижении производительности положением задвижки уменьшается КПД, а напор возрастает. Явление сопровождается бесполезным расходом энергии.
  • Байпасирование. Производительность регулируют байпасом – обходным путем с задвижкой для отвода части жидкости из напорного трубопровода во всасывающий. Подачу изменяют положением задвижки. Величину изменения можно определить по разнице показаний двух дифманометров, установленных перед и после байпаса. При открытии задвижки байпаса возрастает производительность и потребляемая мощность, а КПД снижается. По этой причине данный способ регулировки подачи энергетически менее эффективен по сравнению с изменением частоты оборотов колеса.

Объемный расход устройств центробежного типа определяют по формуле:

  • Q – производительность, м³/с
  • b1, b2 – ширина колеса на внутренней и внешней окружности, м
  • D1, D2 – внешний диаметр впускного отверстия и колеса, м
  • σ – толщина лопаток, м
  • z – количество лопаток
  • c1, c2 – радиальные составляющие абсолютной скорости на входе и выходе из колеса, м/с

Мембранные

Агрегаты мембранного типа обеспечивают высокий напор в нагнетательной линии, при этом величина напора практически не сказывается на производительности. Ввиду инерционности движения мембранные устройства работают с малой частотой, что выливается в низкую подачу.

Винтовые

В винтовых насосах жидкость перекачивается вращением одного или нескольких сцепленных винтов. Профиль винтов позволяет герметично изолировать нагнетающую область от всасывающей.

При вращении винтов во впадинах между корпусом и винтом создаются заполненные жидкостью зоны замкнутого пространства. Жидкая среда постепенно перемещается вдоль винтовой оси в сторону нагнетающей области.

Вращательное движение винтовых насосов в отличие от мембранных не затруднено инерцией. Оборудование подобного типа может работать с высокой частотой и демонстрировать производительность, сравнимую с моделями с центробежным принципом действия, прежде всего многоступенчатыми со средними значениями подачи.

Производительность насосных агрегатов с винтовой конструкцией увеличивается с ростом частоты оборотов, при этом напор не изменяется. У многовинтовых моделей размер подачи выше, чем у одновинтовых.

Подачу насоса с одним винтом вычисляют по формуле:

Импеллерные

Производительность импеллерного насоса напрямую зависит от частоты оборотов вала электрического двигателя. По этой причине оборудование применимо для использования в качестве насоса-дозатора.

В моделях с импеллерным устройством сочетаются достоинства агрегатов с центробежным принципом действия и объемного типа. Остается достижимым высокий уровень напора и подачи, одновременно сохраняется возможность перекачки густых жидкостей с сильной вязкостью.

Насосы-дозаторы

Объемный расход насосов-дозаторов регулируют жестче по сравнению с остальными типами насосов, поскольку основное требование к дозирующему оборудованию – точность дозировки перемещаемой жидкости.

  • Ручное управление. Значение подачи выставляется поворотом ручки настройки.
  • Сервопривод. Ход насоса ограничен до нужной величины, дозирование совершается автоматически. При отключении электроэнергии допускается настройка в ручном режиме.
  • Частотный преобразователь. Настройка осуществляется через электронный блок управления с дисплеем. Возможна ручная настройка.

Среди разных типов насосов-дозаторов по уровню производительности и напора первенство принадлежит электромеханическим устройствам, на втором месте электромагнитные, замыкают ряд агрегаты с перистальтическим принципом действия.

Классификация насосов, их основные рабочие параметры.

1. Насос – это гидравлическая машина для преобразования механической энергии подводимой к нему от приводного двигателя в гидравлическую энергию жидкости.

Насосный агрегат – это насос и приводящий его в действие двигатель закрепленные на общем фундаменте.

Насосная установка включает в себя насосный агрегат с комплектующим оборудованием, смонтированной по определенной схеме.

Современная наука о насосах делит их по принципу действия на три основные класса:

Динамические – лопастные и лопаточные (насосы обтекания)
Объемные – выхревые насосы (насосы увлечения) – объемные насосы (насосы вытеснения)

Объемные насосы такие, в которых жидкость перемешается за счет Изменения объема камеры с жидкостью под действием потенциальной энергии.

Динамические насосы- механизмы, в которых жидкость перемешается вместе с камерой под действием кинетической энергии.

Динамические насосы, в свою очередь, делятся на лопастные и струйные. Отдельно выделяют виды объемных насосов по принципу действия в зависимости от конструкции:

1. Роторные насосы – это цельный корпус, с определённым числом лопаток/лопастей, приходящих в движение при помощи ротора.

2. Шестеренные насосы-самый простой тип механизма, состоящий из сцепленных между собой шестерен, приходящих в движение под принудительным изменением полости между шестернями.

3. Импеллерные в эксцентрический корпус заключены лопасти, при вращении выдавливающие жидкость.

4. Кулачковые -насосы, в корпус которых заключены 2 ротора, которые при вращении перекачивают жидкости разной степени вязкости.

5. Перистальтические – корпус включает эластичный рукав, в котором находится жидкость. При вращении дополнительных валиков жидкость перемещается по рукаву.

6. Винтовые – насосы, состоящие из ротора и статора. При вращении ротора жидкость начинает перемещаться по оси насоса.

Существует также деление динамических насосов по принципу действия:

1. Центробежные -включает в себя рабочее колесо, внутри которого находится жидкость, при вращении колеса, частицы приобретают кинетическую энергию, начинает действовать центробежная сила, под действием которой жидкость переходит в корпус мотора.

2. Вихревые насосы – по принципу действия аналогичны центробежным, но менее габаритны и имеют более низкий КПД.

3. Струйные – основаны на переходе потенциальной энергии в кинетическую.

Вихревый тип насоса является наиболее часто используемым за счет легкости установки. В бытовых нуждах такой агрегат устанавливают в загородных домах для обеспечения подачи воды. Циркуляцию воды обеспечивает жидкость, подаваемая на лопатки. расположенные в корпусе насоса. Ключевым элементов здесь является колесо, на которое вода подается через входное отверстие. Также такой насос используют для скважин, так как создают высокое давление. Они обладают способностью самовсасывания и могут перерабатывать не только жидкость, но газо-водную смесь.

Насосы центробежного типа часто применяют в бытовых и промышленных целях:

· для организации систем водоснабжения на промышленных предприятиях;

· для организации систем водоснабжения жилых кварталов;

· для систем полива.

Эти насосы отличаются простотой эксплуатации, так как принцип работы достаточно прост. Основную нагрузку принимает колесо с лопатками, на которое и подается жидкость, однако если жидкости внутри не будет, то насос выйдет из строя. Чаще такие насосы бывают поверхностными. За счет этого снижается их производительность. Погружные насосы центробежного Типа требуют герметичность корпуса высокого качества.

2. Для насосов основными рабочими параметрами (показателями их работы) являются подача, создаваемый напор (давление), потребляемая насосом мощность, коэффициент полезного действия (КПД) и вакуумметрическая высота всасывания.

Подача может быть объемной и массовой или весовой.

Объемная подача – это отношение объема подаваемой насосом жидкой среды в напорный трубопровод за единицу времени. Обозначается буквой и имеет размерность единицы объема к единице времени .

Массовая подача – это отношение массы подаваемой жидкой среды за единицу времени .

Весовая подача – это отношение веса подаваемой жидкости за единицу времени .

Действительный напор насоса это разность удельных энергий жидкости на входе и выходе в насос. Напор насоса выражается в метрах столба перекачиваемой жидкости.

КПД насоса учитывает все потери, связанные с передачей насосом энергии перекачиваемой жидкости. Эти потери можно представить в виде суммы трех основных видов потерь: гидравлических, объемных и механических.

Полезная мощность Nпол=ρgQH, кВт

Вакуумметрической высотой всасывания называется вакуумметрическое давление при входе в насос, выраженное в метрах водяного столба.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Рейтинг
( Пока оценок нет )
Васильев Олег/ автор статьи

Олег Васильев — специалист по ремонту квартир и домов с большим портфелем реализованных проектов. Он разбирается в планировках, инженерных системах и современных материалах. На сайте делится практическими рекомендациями для качественного ремонта.

Понравилась статья? Поделиться с друзьями:
Domsolo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: